Polydispersity is a challenging feature of many industrial and environmental multiphase flows, influencing all related transfer and transport processes. Besides their size, the fluid or solid particles may be distributed with respect to other properties such as their velocity or shape. Here, a population balance model based on the method of classes is combined with a multifluid solver within the open source computational fluid dynamics library OpenFOAM. The model allows for tracking the evolution of one or more size-conditioned secondary properties. It is applied to two different problems, the first being bubbly flow of air and water in a vertical pipe, where considering the velocity as a secondary property allows to resolve the size-dependent radial segregation. The second application is the gas phase synthesis of titania powder, where non-spherical particle aggregates appear whose shape is modeled through a collision diameter, leading to an improved prediction of the size distribution. 相似文献
Far-reaching decisions in organizations often rely on sophisticated methods of data analysis. However, data availability is not always given in complex real-world systems, and even available data may not fully reflect all the underlying processes. In these cases, artificial data can help shed light on pitfalls in decision making, and gain insights on optimized methods. The present paper uses the example of forecasts targeting the outcomes of sports events, representing a domain where despite the increasing complexity and coverage of models, the proposed methods may fail to identify the main sources of inaccuracy. While the actual outcome of the events provides a basis for validation, it remains unknown whether inaccurate forecasts source from misestimating the strength of each competitor, inaccurate forecasting methods or just from inherently random processes. To untangle this paradigm, the present paper proposes the design of a comprehensive simulation framework that models the sports forecasting process while having full control of all the underlying unknowns. A generalized model of the sports forecasting process is presented as the conceptual basis of the system and is supported by the main challenges of real-world data applications. The framework aims to provide a better understanding of rating procedures and forecasting techniques that will boost new developments and serve as a robust validation system accounting for the predictive quality of forecasts. As a proof of concept, a full data generation is showcased together with the main analytical advantages of using artificial data.
This paper provides the first comprehensive evaluation and analysis of modern (deep-learning-based) unsupervised anomaly detection methods for chemical process data. We focus on the Tennessee Eastman process dataset, a standard litmus test to benchmark anomaly detection methods for nearly three decades. Our extensive study will facilitate choosing appropriate anomaly detection methods in industrial applications. From the benchmark, we conclude that reconstruction-based methods are the methods of choice, followed by generative and forecasting-based methods. 相似文献
Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton’s jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties. 相似文献
Pituitary adenylate cyclase activating polypeptide (PACAP) was first isolated as a hypothalamic peptide based on its efficacy to increase adenylate cyclase (AC) activity. It has a widespread distribution throughout the body including the nervous system and peripheral organs, where PACAP exerts protective effects both in vivo and in vitro through its anti-apoptotic, anti-inflammatory, and antioxidant functions. The aim of the present paper was to review the currently available literature regarding the effects of PACAP on cell death in vitro in neural and non-neural cells. Among others, its effect on apoptosis can be detected in cerebellar granule cells against different toxic stimuli. Different neural cell types from the cerebral cortex are also prevented from cell death. PACAP also shows effects on cell death in cells belonging to the peripheral nervous system and protects both neural and non-neural cells of sensory organs. In addition, cell survival-promoting effect can be observed in different peripheral organ systems including cardiovascular, immune, respiratory, gastrointestinal, urinary, and reproductive systems. The studies summarized here indicate its noteworthy effect on cell death in different in vitro models, suggesting PACAP’s potential therapeutic usage in several pathological conditions. 相似文献
Herein we report the structure-activity and structure-physicochemical property relationships of a series of class I selective ortho-aminoanilides targeting the “foot-pocket” in HDAC1&2. To balance the structural benefits and the physicochemical disadvantages of these substances, we started with a set of HDACi related to tacedinaline (CI-994) and evaluated their solubility, lipophilicity (log D7.4) and inhibition of selected HDAC isoforms. Subsequently, we selected the most promising “capless” HDACi and transferred its ZBG to our previously published scaffold featuring a peptoid-based cap group. The resulting hit compound 10 c ( LSH-A54) showed favorable physicochemical properties and is a potent, selective HDAC1/2 inhibitor. The following evaluation of its slow binding properties revealed that LSH-A54 binds tightly to HDAC1 in an induced-fit mechanism. The potent HDAC1/2 inhibitory properties were reflected by attenuated cell migration in a modified wound healing assay and reduced cell viability in a clonogenic survival assay in selected breast cancer cell lines. 相似文献
The evolution of chiral spin structures is studied in ferrimagnetic Ta/Ir/Fe/GdFeCo/Pt multilayers as a function of temperature using scanning electron microscopy with polarization analysis (SEMPA). The GdFeCo ferrimagnet exhibits pure right-handed Néel-type domain wall (DW) spin textures over a large temperature range. This indicates the presence of a negative Dzyaloshinskii–Moriya interaction that can originate from both the top Fe/Pt and the Co/Pt interfaces. From measurements of the DW width, as well as complementary magnetic characterization, the exchange stiffness as a function of temperature is ascertained. The exchange stiffness is surprisingly more or less constant, which is explained by theoretical predictions. Beyond single skyrmions, it is identified by direct imaging a pure Néel-type skyrmionium, which due to the expected vanishing skyrmion Hall angle, is a promising topological spin structure to enable applications by next generation of spintronic devices. 相似文献
Intestinal anastomotic leaking, which involves the discharge of chemically aggressive, non-sterile fluids into the abdomen, remains one of the most dreaded postoperative complications of abdominal surgery. Depending on the site and the patient condition, incidence ranging between 4% and 21% and mortality rates up to 27% are reported. Currently available surgical sealants only poorly address the issue, especially since most commonly used fibrin glues fail due to insufficient adhesion and chemical instability. Here, a chemically highly resistive, leak-tight, and mucoadhesive hydrogel sealant, which is grafted on the surface of the intestinal wall using a mutually interpenetrating network that traverses hydrogel and tissue is presented. In contrast to clinically used fibrin-based sealants (including Tachosil), the developed adhesive poly(acrylamide-methyl acrylate-acrylic acid) patch does not degrade and exhibits strong tissue adhesion even when exposed to intestinal fluid. The biocompatible hydrogel patch effectively seals anastomotic leaks in ex vivo intestinal models, greatly surpassing commercial sealants (time to patch-failure >24 h compared to 5 min for commonly used Tachosil). Importantly, the developed adhesive patch paves the way for the application of both mechanically and chemically robust sealants suitable for the treatment and prevention of intestinal leaks. 相似文献
Halide perovskites have undergone an impressive development and could be used in a wide range of optoelectronic devices, where some of them are already at the edge of commercialization, e.g., perovskite solar cells. Recently, interest in perovskites in powder form has increased, as for example, they are found to exhibit high stability and allow for easy production of large quantities. Accordingly, also the topic of processing thin and thick films on the basis of perovskite powders is currently gaining momentum. Here, perovskite powder can form the basis for both, typical wet and solvent-based processing approaches, as well as for dry processes. In this Progress Report, the recent developments of halide perovskites in powder form and of film processing approaches are summarized that are based on them. The advantages and opportunities of the different processing methods are highlighted, but their individual drawbacks and limitations are also discussed. Prospects are also pointed out and possible steps necessary to unlock the full potential of powder-based processing methods for producing high quality thick and thin perovskite layers in the future are discussed. 相似文献