首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   33篇
  国内免费   6篇
电工技术   9篇
综合类   1篇
化学工业   179篇
金属工艺   16篇
机械仪表   17篇
建筑科学   27篇
矿业工程   2篇
能源动力   40篇
轻工业   24篇
水利工程   17篇
石油天然气   12篇
无线电   39篇
一般工业技术   79篇
冶金工业   15篇
原子能技术   9篇
自动化技术   118篇
  2024年   3篇
  2023年   6篇
  2022年   15篇
  2021年   34篇
  2020年   36篇
  2019年   33篇
  2018年   36篇
  2017年   33篇
  2016年   37篇
  2015年   29篇
  2014年   34篇
  2013年   55篇
  2012年   35篇
  2011年   44篇
  2010年   27篇
  2009年   27篇
  2008年   24篇
  2007年   14篇
  2006年   8篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
  1972年   1篇
排序方式: 共有604条查询结果,搜索用时 15 毫秒
101.
In this paper, 3-dimensional numerical simulation of steady natural convective flow and heat transfer are studied in a single-ended tube with non-uniform heat input. Apart from some other applications, it serves as a simplified model of the single-ended evacuated solar tube of a water-in-glass evacuated tube solar water heater. It is assumed that the sealed end of tube to be adiabatic and also the tube opening to be subjected to copper–water nanofluid. Governing equations are derived based on the conceptual model in the cylindrical coordinate system. The governing equations have been then approximated by means of a fully implicit finite volume control method (FVM), using SIMPLE algorithm on the collocated arrangement. The study has been carried out for solid volume fraction 0 ≤ φ ≤ 0.05 and maximum heat flux 100 ≤ qm ≤ 700. Considering that the driven flow in the tube is influenced by the dimensions and the inclination angle of the solar tube, the flow patterns and temperature distributions are presented on different cross sectional planes and longitudinal sections, when the tube is positioned at different orientations.  相似文献   
102.
In this study, the dissimilar friction stir welding(FSW) butt joints between aluminum alloy 5754-H114 and commercially pure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on the advancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for the aluminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWed joints, optical microscopy and mechanical tests(i.e., uniaxial tensile test and microhardness) were used, respectively.Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopy and X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed joints was investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formed in FSWed joints were Al4Cu9 and Al2Cu. The best results were found in joints with 1000 rpm rotational speed and100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength.Moreover, maximum value of the microhardness of the stir zone(SZ) was attained as about 120 HV, which was greatly depended on the grain size, intermetallic compounds and copper pieces in SZ.  相似文献   
103.
A three-parameter tangent inverse equation is generically proposed for the non-linear moment-rotation (M-θ) relationship of semi-rigid steel beam-to-column connections. The parameters are the initial stiffness, the plastic stiffness, and a reference moment. Two commonly used welded moment connections are picked up for moment-rotation calculation and comparison between the results of the proposed model and those of a detailed nonlinear finite elements modeling. Semi-analytical equations are proposed for calculating the parameters containing basic factors affecting behavior of the connections. The coefficients of the equations are computed based on a data bank developed in this study using the finite element method. A large number of finite elements models covering the whole range of common dimensions of the above connections are analyzed. Accuracy of the finite element model is verified on the basis of the available test results from previous studies. Tensile tests for determination of material properties of weld to be used in the modeling are conducted. Comparison between the results of the semi-analytical equations and the finite element models shows that the proposed model is able to estimate the moment-rotation curves of the welded beam-to-column connections with very good accuracy.  相似文献   
104.
105.
An industrial scale propylene production via oxidative dehydrogenation of propane(ODHP)in multi-tubular reactors was modeled.Multi-tubular fixed-bed reactor used for ODHP process,employing 10000 of small diameter tubes immersed in a shell through a proper coolant flows.Herein,a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence ole fin over V_2O_5/γ-Al_2O_3catalyst was presented.Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions,gas process and coolant temperatures,as well as other parameters affecting the reactor performance such as pressure.Furthermore,the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%.The optimized length of the reactor needed to reach 100%conversion of the oxygen was theoretically determined.For the single-bed reactor the optimized length of 11.96 m including 0.5m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72m for the first and 7.32 m for the second reactor were calculated.Ultimately,the use of a distributed oxygen feed with limited number of injection points indicated a signi ficant improvement on the reactor performance in terms of propane conversion and propylene selectivity.Besides,this concept could overcome the reactor runaway temperature problem and enabled operations at the wider range of conditions to obtain enhanced propylene production in an industrial scale reactor.  相似文献   
106.
107.
This article presents a numerical study of natural convection cooling of a heat source mounted inside the cavity, with special attention being paid to entropy generation. The right vertical wall is partially open and is subjected to copper–water nanofluid at a constant low temperature and pressure, while the other boundaries are assumed to be adiabatic. The governing equations have been solved using the finite volume approach, using SIMPLE algorithm on the collocated arrangement. The study has been carried out for a Rayleigh number in the range 103 < Ra < 106, and for solid volume fraction 0 <? <0.05. In order to investigate the effect of the heat source and open boundary location, six different configurations are considered. The effects of Rayleigh numbers, heat source and open boundary locations on the streamlines, isotherms, local entropy generation, Nusselt number, and total entropy generation are investigated. The results indicate that when open boundary is located up, the fluid flow augments and hence the heat transfer and Nusselt number increase and total entropy generation decreases.  相似文献   
108.
The study presented in this article concentrated on investigating the ductility and characterization of damage in concrete beams post tensioned with hybrid carbon-glass fiber-reinforced polymer (HFRP) composites. The investigation included an approach for design of flexural members with HFRP tendons and characterization of damage, load deformation response, ultimate strength, and failure modes. Direct tensile tests of hybrid FRP rods in a previous study had indicated elastoplastic response, enhanced ductility, and increased strain capacity. In this context, the current study focused on design and fabrication of post tensioned beams using glass or steel rebars for partial prestressing. All the beams were tested in flexure under four-point bending configuration. Results of the study are presented in terms of ductility index and enhanced load-deflection response in comparison with the conventional FRP materials. Damage characterization involved evaluating the specific features of the acoustic emissions for detecting the elastoplastic transition in the hybrid tendons. The method involved use of a high-resolution fiber-optic interferometer for detection and separation of acoustic emissions. By using the time domain response, it was possible to spatially localize the damage at various stages of the loading. Spectral energy of the acoustic emissions facilitated separation of carbon and glass fiber fractures.  相似文献   
109.
The densification and grain growth of bodies made from a commercial ultrafine alumina powder was investigated. The primary powder was initially subjected to dry (uniaxial cold pressing) and wet shaping (slip casting), followed by conventional (CS)-, two step (TSS)-, and microwave (MS) sintering to explore the effect of each series of treatments on the densification and microstructural evolution of the specimens. It was demonstrated that a uniform microstructure with higher density would be obtained using the wet shaping method. In addition, microwave sintering was found to be more effective into the densification of the specimens and in yielding a finer grain structure. It is believed that the high heating rate and effective particle packing are responsible for the improvements in these properties. On this basis, it was also demonstrated that the fracture toughness of the samples increased significantly through the application of microwave sintering.  相似文献   
110.
The design of the coaxial mixers depends on many interrelated parameters including the geometry and dimensions of the mixing vessel, the location and type of the impellers, speed ratio, impeller diameter, rotation mode, and fluid rheology. No study has been reported in the literature regarding the mixing performance of the coaxial mixers in the agitation of yield-pseudoplastic fluids. Thus, the main objective of this study was to evaluate the performance of a Scaba–anchor coaxial mixer (a novel configuration) in the mixing of xanthan gum solutions (yield-pseudoplastic fluids). The Herschel–Bulkley model was used to describe the rheological behavior of the xanthan gum solutions. To develop new correlations for the generalized Reynolds and power numbers of the coaxial mixers employed in the agitation of this class of non-Newtonian fluids, we utilized numerous experimental and computational fluid dynamics (CFD) data. The new correlations were tested successfully at different operating conditions (e.g. speed ratio, fluid rheology, and operation mode).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号