首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   4篇
  国内免费   1篇
电工技术   14篇
综合类   5篇
化学工业   91篇
金属工艺   15篇
机械仪表   21篇
建筑科学   24篇
能源动力   30篇
轻工业   30篇
水利工程   1篇
石油天然气   2篇
无线电   45篇
一般工业技术   70篇
冶金工业   11篇
原子能技术   9篇
自动化技术   77篇
  2024年   9篇
  2023年   11篇
  2022年   7篇
  2021年   35篇
  2020年   30篇
  2019年   39篇
  2018年   35篇
  2017年   24篇
  2016年   42篇
  2015年   19篇
  2014年   27篇
  2013年   41篇
  2012年   21篇
  2011年   35篇
  2010年   21篇
  2009年   11篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有445条查询结果,搜索用时 15 毫秒
81.
82.
A theoretical model for geometrically nonlinear vibration analysis of piezoelectrically actuated circular plates made of functionally grade material (FGM) is presented based on Kirchhoff’s-Love hypothesis with von-Karman type geometrical large nonlinear deformations. To determine the initial stress state and pre-vibration deformations of the smart plate a nonlinear static problem is solved followed by adding an incremental dynamic state to the pre-vibration state. The derived governing equations of the structure are solved by exact series expansion method combined with perturbation approach. The material properties of the FGM core plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents. Control of the FGM plate’s nonlinear deflections and natural frequencies using high control voltages is studied and their nonlinear effects are evaluated. Numerical results for FG plates with various mixture of ceramic and metal are presented in dimensionless forms. In a parametric study the emphasis is placed on investigating the effect of varying the applied actuator voltage as well as gradient index of FGM plate on vibration characteristics of the smart structure. This paper was recommended for publication in revised form by Associate Editor Eung-Soo Shin Farzad Ebrahimi received his B.S. and M.S. degree in Mechanical Engineering from University of Tehran, Iran. He is currently working on his Ph.D. thesis under the title of “Vibration analysis of smart functionally graded plates” at Smart Materials and Structures Lab in Faculty of Mechanical Engineering of the University of Tehran. His research interests include vibration analysis of plates and shells, smart materials and structures and functionally graded materials.  相似文献   
83.
Ever increasing requirements regarding vehicle safety have led to rapid developments in various joining process. Among FSW widely used for Aluminum alloy welded structure of car body because of their remarkable performance in welding. For a better understanding of this performance, it is necessary to determine the behavior of butt weld in service conditions. In earlier phase of this study, thermo mechanical simulations and analysis are performed to understand the thermal behavior in the FSW weld zones. The developed models are correlated against published experimental results in terms of temperature profile of the weld zone. The objectives of the second part of this work is to develop and demonstrate an FE model of bumper and crash box assembly that would improve on the current modeling techniques for the mechanical response of welds in structural problems.  相似文献   
84.
Ventricular septal defect (VSD) is one of the most common types of congenital heart defects (CHD). There are vivid multifactorial causes for VSD in which both genetic and environmental risk factors are consequential in the development of CHD. Methionine synthase reductase (MTRR) and methylenetetrahydrofolate reductase (MTHFR) are two of the key regulatory enzymes involved in the metabolic pathway of homocysteine. Genes involved in homocysteine/folate metabolism may play an important role in CHDs. In this study; we determined the association of A66G and C524T polymorphisms of the MTRR gene and C677T polymorphism of the MTHFR gene in Iranian VSD subjects. A total of 123 children with VSDs and 125 healthy children were included in this study. Genomic DNA was extracted from the buccal cells of all the subjects. The restriction fragment length polymorphism polymerase chain reaction (PCR-RFLP) method was carried out to amplify the A66G and C524T polymorphism of MTRR and C677T polymorphism of MTHFR genes digested with Hinf1, Xho1 and Nde1 enzymes, respectively. The genotype frequencies of CC, CT and TT of MTRR gene among the studied cases were 43.1%, 40.7% and 16.3%, respectively, compared to 52.8%, 43.2% and 4.0%, respectively among the controls. For the MTRR A66G gene polymorphism, the genotypes frequencies of AA, AG and GG among the cases were 33.3%, 43.9% and 22.8%, respectively, while the frequencies were 49.6%, 42.4% and 8.0%, respectively, among control subjects. The frequencies for CC and CT genotypes of the MTHFR gene were 51.2% and 48.8%, respectively, in VSD patients compared to 56.8% and 43.2% respectively, in control subjects. Apart from MTHFR C677T polymorphism, significant differences were noticed (p < 0.05) in C524T and A66G polymorphisms of the MTRR gene between cases and control subjects.  相似文献   
85.
Magnetite nanoparticles with an average particle size of 28.8 nm were synthesized, coated with oleic acid, and characterized using various techniques such as DLS, FT‐IR, SEM, XRD, VSM, and UV‐Vis analysis. A nanofluid consisting of synthesized nanoparticles and 5 wt % acetic acid in toluene as the dispersed phase was prepared and used in the chemical test system, Toluene‐Acetic Acid‐Water, for the single drop extraction in the presence and absence of an external oscillating magnetic field. Influences of various operating and design parameters such as nanoparticle concentration, drop diameter, and the applied current and frequency on the overall mass‐transfer coefficients for the mass‐transfer direction from d→c were investigated carefully. The obtained results were used to propose a general correlation for the mass‐transfer enhancement. It was found that the maximum mass‐transfer enhancement compared with that obtained in the absence of nanoparticles and the oscillating magnetic field is about 259%. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4466–4479, 2016  相似文献   
86.
    
The association between obesity, cancer and cardiovascular disease (CVD) has been demonstrated in animal and epidemiological studies. However, the specific role of visceral obesity on cancer and CVD remains unclear. Visceral adipose tissue (VAT) is a complex and metabolically active tissue, that can produce different adipokines and hormones, responsible for endocrine-metabolic comorbidities. This review explores the potential mechanisms related to VAT that may also be involved in cancer and CVD. In addition, we discuss the shared pharmacological treatments which may reduce the risk of both diseases. This review highlights that chronic inflammation, molecular aspects, metabolic syndrome, secretion of hormones and adiponectin associated to VAT may have synergistic effects and should be further studied in relation to cancer and CVD. Reductions in abdominal and visceral adiposity improve insulin sensitivity, lipid profile and cytokines, which consequently reduce the risk of CVD and some cancers. Several medications have shown to reduce visceral and/or subcutaneous fat. Further research is needed to investigate the pathophysiological mechanisms by which visceral obesity may cause both cancer and CVD. The role of visceral fat in cancer and CVD is an important area to advance. Public health policies to increase public awareness about VAT’s role and ways to manage or prevent it are needed.  相似文献   
87.
    
This study reported the synthesis of fluorescent hydroxyapatite/alginate/carbon quantum dots (HA/Alg/CQDs) nanocomposites via the co-precipitation technique. The N-doped CQDs as a new class of fluorescent materials were prepared by the citric acid pyrolysis method, with an average size around 4 nm. Physical, chemical, and optical properties of the synthesized nanocomposites were investigated by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), UV–visible spectroscopy, and photoluminescence (PL) spectroscopy, respectively. The PL spectroscopy data verified the favorable in vitro luminescent emission of the HA/Alg/CQDs nanocomposites in comparison with HA/Alg and HA samples. The XRD patterns of the prepared samples confirmed the formation of crystalline HA in all composites, possessing a Ca/P ratio around 1.5 as obtained by EDX elemental analysis. The FESEM analysis exhibited HA nanoplates that homogeneously distributed throughout the alginate matrix. Therefore, the synthesized nanocomposites could be regarded as potential trackable drug carriers for hard tissue engineering applications.  相似文献   
88.
In this study, the impact of TiN as a sintering aid on the relative density and microstructure of TiB2 ceramic was investigated. Monolithic TiB2 and TiB2 doped with 5?wt% TiN were sintered at 1900?°C for 7?min dwell time under the pressure of 40?MPa by spark plasma. The addition of TiN affected the microstructure of TiB2-based sample considerably depicting the finer grains in the as-sintered ceramic. X-ray diffraction evaluation indicated that no interaction occurred between the initial materials. However, detail investigation by the map analysis and energy dispersive spectroscopy results revealed the formation of in-situ nano-sized hBN secondary phase in the TiN-doped TiB2. In addition, TiN played a remarkable role on increasing the relative density of TiN-doped TiB2 ceramic producing a nearly fully dense ceramic with relative density of 99.9% in comparison with the monolithic ceramic having 96.7% relative density.  相似文献   
89.
90.
    
We propose a multiscale approach to study the influence of carbon nanotubes’ agglomeration on the stability of hybrid nanocomposite plates. The hybrid nanocomposite consists of both macro- and nano-scale reinforcing fibers dispersed in a polymer matrix. The equivalent material properties are calculated by coupling the Eshelby-Mori-Tanaka model with the rule of mixture accounting for effects of CNTs inside the generated clusters. Furthermore, an energy based approach is implemented to obtain the governing equations of the problem utilizing a refined higher-order plate theorem. Subsequently, the derived equations are solved by Galerkin’s analytical method to predict the critical buckling load. The influence of various boundary conditions is studied as well. After validation, a set of numerical examples are presented to explain how each variant can affect the plate’s natural frequency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号