首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   46篇
电工技术   10篇
化学工业   220篇
金属工艺   12篇
机械仪表   18篇
建筑科学   48篇
矿业工程   1篇
能源动力   8篇
轻工业   44篇
水利工程   8篇
石油天然气   1篇
无线电   54篇
一般工业技术   123篇
冶金工业   45篇
原子能技术   4篇
自动化技术   92篇
  2023年   3篇
  2022年   4篇
  2021年   16篇
  2020年   11篇
  2019年   18篇
  2018年   14篇
  2017年   14篇
  2016年   21篇
  2015年   21篇
  2014年   28篇
  2013年   50篇
  2012年   32篇
  2011年   50篇
  2010年   34篇
  2009年   27篇
  2008年   36篇
  2007年   33篇
  2006年   30篇
  2005年   28篇
  2004年   36篇
  2003年   24篇
  2002年   14篇
  2001年   5篇
  2000年   8篇
  1999年   10篇
  1998年   5篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   9篇
  1993年   6篇
  1992年   7篇
  1991年   9篇
  1990年   7篇
  1989年   4篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1974年   2篇
  1972年   2篇
  1970年   6篇
  1967年   2篇
  1956年   1篇
排序方式: 共有688条查询结果,搜索用时 31 毫秒
681.
Perfluorinated acids (PFAs) and their salts have emerged as an important class of global environmental contaminants. Determination of sub-parts-per-trillion or parts-per-quadrillion concentrations of perfluorinated acids in aqueous media has been impeded by relatively high background levels arising from procedural or instrumental blanks. To understand the role of the oceans in the transport and fate of perfluorinated acids, methods to determine ultratrace levels of these compounds in seawater are needed. In this study, sources of procedural and instrumental blank contamination by perfluorinated acids have been identified and eliminated, to reduce background levels in blanks and thereby improve limits of quantitation. The method developed in this study is capable of detecting perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHS), perfluorobutanesulfonate (PFBS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorooctanesulfonamide (PFOSA) at low pg/L levels in oceanic waters. PFOA is the major perfluorinated compound detected in oceanic waters, followed by PFOS. Further studies are being conducted to elucidate the distribution and fate of perfluorinated acids in oceans.  相似文献   
682.
One of the main issues in designing a brain-computer interface (BCI) is to find brain patterns, which could easily be detected. One of these pattern is the steady-state evoked potential (SSEP). SSEPs induced through the visual sense have already been used for brain-computer communication. In this work, a BCI system is introduced based on steady-state somatosensory evoked potentials (SSSEPs). Transducers have been used for the stimulation of both index fingers using tactile stimulation in the "resonance"-like frequency range of the somatosensory system. Four subjects participated in the experiments and were trained to modulate induced SSSEPs. Two of them learned to modify the patterns in order to set up a BCI with an accuracy of between 70% and 80%. Results presented in this work give evidence that it is possible to set up a BCI which is based on SSSEPs.  相似文献   
683.
Tai-Yon Cho  Gert Strobl 《Polymer》2006,47(4):1036-1043
Time- and temperature-dependent SAXS and WAXS experiments on poly(l-lactide) were used (i) to establish the relationships between the crystallization temperature, the crystal thickness and the melting point, (ii) to follow recrystallization processes during heating, and (iii) to detect perturbations of the crystalline order. The studies showed several peculiarities: (i) although no solid state thickening occurs during a crystallization, crystal thicknesses are with values between 11 and 20 nm very large (ii) crystal thicknesses and long spacings have a minimum at 120 °C and increase for both higher and lower crystallization temperatures. The anomalous behavior at low crystallization temperatures is to be related with a disordering of the crystal lattice (iii) there exists an extended temperature range where crystal thicknesses change in controlled manner by recrystallization processes (iv) as it appears, a triple point where the fluid, the crystalline and a mesomorphic phase coexist is located near to normal pressure and a temperature of 190 °C.  相似文献   
684.
It is demonstrated that the kinetic plot representation of experimental plate height data can also account for practical constraints on the column length, the peak width, the viscous heating, and the mobile-phase velocity without needing any iterative solution routine. This implies that the best possible kinetic performance to be expected from a given tested support under any possible set of practical optimization constraints can always be found using a directly responding calculation spreadsheet template. To show how the resulting constrained kinetic plots can be used as a powerful design and selection tool, the method has been applied to a series of plate height measurements performed on a number of different commercial columns for the same component (butyl-parabene) and mobile-phase composition. The method, for example, allows one to account for the fact that the advantageous solutions displayed by the silica monolith and 5 microm particle columns in the large plate number range of the free kinetic plot are no longer accessible if applying a maximal column length constraint of Lmax = 30 cm. In the plate number range that remains accessible, the investigated sub-2 mum particle columns in any case perform (at least for the presently considered parabene separation) better than the 3.5 mum particle columns or silica monolith, especially if considering the use of system pressures exceeding 400 bar. The constrained kinetic plot method can also be used to select the best-suited column length from an available product gamma to perform a separation with a preset number of plates. One of the optimization results that is obtained in this case is that sometimes a significant gain in analysis time can be obtained by selecting a longer column, yielding the desired plate number at a larger velocity than that for a shorter column.  相似文献   
685.
Raman spectra of CO(2) dissolved in water and heavy water were measured at 22 degrees C, and the Fermi doublet of CO(2), normally at 1285.45 and 1388.15 cm(-1) in the gaseous state, revealed differences in normal water and heavy water, although no symmetry lowering of the hydrated CO(2) could be detected. Raman spectra of crystalline KHCO(3) and KDCO(3) were measured at 22 degrees C and compared with the infrared data from the literature. In these solids, (H(D)CO(3))(2)(2-) dimers exist and the spectra reveal strong intramolecular coupling. The vibrational data of the dimer (C(2h) symmetry) were compared with the values from density functional theory (DFT) calculations and the agreement is fair. Careful measurements were made of the Raman spectra of aqueous KHCO(3), and KDCO(3) solutions in D(2)O down to 50 cm(-1) and, in some cases, down to very low concentrations (> or =0.0026 mol/kg). In order to complement the spectroscopic assignments, infrared solution spectra were also measured. The vibrational spectra of HCO(3)(-)(aq) and DCO(3)(-)(D(2)O) were assigned, and the measured data compared well with data derived from DFT calculations. The symmetry for HCO(3)(-)(aq) is C(1), while the gas-phase structure of HCO(3)(-) possesses Cs symmetry. No dimers could be found in aqueous solutions, but at the highest KHCO(3) concentration (3.270 mol/kg) intermolecular coupling between HCO(3)(-)(aq) anions could be detected. KHCO(3) solutions do not dissolve congruently, and with increasing concentrations of the salt increasing amounts of carbonate could be detected. Raman and infrared spectra of aqueous Na(2) -, K(2) -, and Cs(2)CO(3) solutions in water and heavy water were measured down to 50 cm(-1) and in some cases down to extremely low concentrations (0.002 mol/kg) and up to the saturation state. For carbonate in aqueous solution a symmetry breaking of the D(3h) symmetry could be detected similar to the situation in aqueous nitrate solutions. Strong hydration of carbonate in aqueous solution could be detected by Raman spectroscopy. The hydrogen bonds between carbonate in heavy water are stronger than the ones in normal water. In sodium and potassium carbonate solutions no contact ion pairs could be detected even up to the saturated solutions. However, solvent separated ion pairs were inferred in concentrated solutions in accordance with recent dielectric relaxation spectroscopy (DRS) measurements. Quantitative Raman measurements of the hydrolysis of carbonate in aqueous K(2)CO(3) solutions were carried out and the hydrolysis degree a was determined as a function of concentration at 22 degrees C. The second dissociation constant, pK(2), of the carbonic acid was determined to be equal to 10.38 at 22 degrees C.  相似文献   
686.

BACKGROUND

Since available arable land is limited and nitrogen fertilizers pollute the environment, cropping systems ought to be developed that do not rely on them. Here we investigate the rapidly growing, N2‐fixing Azolla/Nostoc symbiosis for its potential productivity and chemical composition to determine its potential as protein feed.

RESULTS

In a small production system, cultures of Azolla pinnata and Azolla filiculoides were continuously harvested for over 100 days, yielding an average productivity of 90.0–97.2 kg dry weight (DW) ha?1 d?1. Under ambient CO2 levels, N2 fixation by the fern's cyanobacterial symbionts accounted for all nitrogen in the biomass. Proteins made up 176–208 g kg?1 DW (4.9 × total nitrogen), depending on species and CO2 treatment, and contained more essential amino acids than protein from soybean. Elevated atmospheric CO2 concentrations (800 ppm) significantly boosted biomass production by 36–47%, without decreasing protein content. Choice of species and CO2 concentrations further affected the biomass content of lipids (79–100 g kg?1 DW) and (poly)phenols (21–69 g kg?1 DW).

CONCLUSIONS

By continuous harvesting, high protein yields can be obtained from Azolla cultures, without the need for nitrogen fertilization. High levels of (poly)phenols likely contribute to limitations in the inclusion rate of Azolla in animal diets and need further investigation. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
  相似文献   
687.
688.
Stimuli–responsive mechanoadaptive materials, capable of reversibly changing their mechanical properties when exposed to an external stimulus, are the next generation of smart materials with immense transformative potential for various technological applications. Although the concept of adaptive mechanical properties has been proven for some materials, it remains very challenging for soft elastomeric materials. The aim of this review is to provide new ideas and strategies for the development of mechanoadaptive elastomeric composites using commercial rubber as the matrix polymer. The fundamental question addressed here is as follows: How do the phase-responsive functional fillers alter the mechanical properties? For a given physical network environment, what is the mechanism that gives rise to the stimuli–responsive properties of the resulting composites? Herein, the preparation, structure, and properties of recently developed mechanoadaptive elastomeric materials are summarized. Furthermore, based on their structure–property relationships, plausible applications of these smart materials in various technology-specific applications such as soft robotics, actuators, sensors, smart tires, automotive design, aerospace, etc. are demonstrated with representative examples. Finally, the article critically discusses the existing challenges in the field of mechanoadaptive elastomers in order to provide valuable insights in this area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号