首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2009篇
  免费   142篇
  国内免费   11篇
电工技术   28篇
综合类   5篇
化学工业   516篇
金属工艺   31篇
机械仪表   79篇
建筑科学   53篇
矿业工程   2篇
能源动力   178篇
轻工业   201篇
水利工程   13篇
石油天然气   32篇
无线电   197篇
一般工业技术   416篇
冶金工业   61篇
原子能技术   23篇
自动化技术   327篇
  2024年   8篇
  2023年   71篇
  2022年   140篇
  2021年   154篇
  2020年   117篇
  2019年   119篇
  2018年   131篇
  2017年   114篇
  2016年   139篇
  2015年   77篇
  2014年   138篇
  2013年   178篇
  2012年   126篇
  2011年   115篇
  2010年   87篇
  2009年   83篇
  2008年   59篇
  2007年   43篇
  2006年   42篇
  2005年   25篇
  2004年   19篇
  2003年   17篇
  2002年   16篇
  2001年   14篇
  2000年   7篇
  1999年   13篇
  1998年   21篇
  1997年   8篇
  1996年   16篇
  1995年   7篇
  1994年   10篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有2162条查询结果,搜索用时 31 毫秒
71.
Poly[vinylidenefluoride‐co‐(tetrafluoroethylene)] (P(VDF‐TeFE)) exhibited clear spherulitic texture with negative birefringence. The number and growth rates of the spherulites decreased at high crystallization temperature than at low crystallization temperature. Nonetheless, overall larger spherulites were found at high crystallization temperature and the brightness of the spherulites increased very fast at low crystallization temperature, thereafter it seemed as diminution of birefringence. AFM was used to investigate the impact of organo modified nanodiamond(ND) on spherulitic textures, lamellar thickness, and thickness distribution of P(VDF‐TeFE) copolymer. Poly[ethylene‐co‐(tetrafluoroethylene)] (ETFE) also confirmed spherulites structure and the boundaries could be clearly observed. By incorporation of the organo modified nanodiamond (ND) and organo‐modified montmorillonite (MMT) in fluropolymer matrix, it was found that spherulitic texture was seriously disordered and their nanohybrids was found only to have poorly developed spherulite structure. Both of the nanohybrids samples show better crystallization temperature as compared to their neat copolymer samples. Furthermore, the incorporation of nanoparticles decreased the size of the spherulites. POLYM. ENG. SCI., 57:161–171, 2017. © 2016 Society of Plastics Engineers  相似文献   
72.

Wireless body area network (WBAN) has witnessed significant attentions in the healthcare domain using biomedical sensor-based monitoring of heterogeneous nature of vital signs of a patient’s body. The design of frequency band, MAC superframe structure, and slots allocation to the heterogeneous nature of the patient’s packets have become the challenging problems in WBAN due to the diverse QoS requirements. In this context, this paper proposes an Energy Efficient Traffic Prioritization for Medium Access Control (EETP-MAC) protocol, which provides sufficient slots with higher bandwidth and guard bands to avoid channels interference causing longer delay. Specifically, the design of EETP-MAC is broadly divided in to four folds. Firstly, patient data traffic prioritization is presented with broad categorization including Non-Constrained Data (NCD), Delay-Constrained Data (DCD), Reliability-Constrained Data (RCD) and Critical Data (CD). Secondly, a modified superframe structure design is proposed for effectively handling the traffic prioritization. Thirdly, threshold based slot allocation technique is developed to reduce contention by effectively quantifying criticality on patient data. Forth, an energy efficient frame design is presented focusing on beacon interval, superframe duration, and packet size and inactive period. Simulations are performed to comparatively evaluate the performance of the proposed EETP-MAC with the state-of-the-art MAC protocols. The comparative evaluation attests the benefit of EETP-MAC in terms of efficient slot allocation resulting in lower delay and energy consumption.

  相似文献   
73.
74.
Multimedia Tools and Applications - Face detection by low-resolution image (LR) is one of the key aspects of Human-Computer Interaction(HCI). Due to the LR image, which has changes in pose,...  相似文献   
75.
Cobalt-doped (Zn,Ni)(O,S) or Co-(Zn,Ni)(O,S) was facilely synthesized at low temperature below 100 °C with different cobalt precursor contents for photocatalytic hydrogen production. The X-ray pattern and elemental mapping proved that cobalt was successfully doped into zinc sites in the (Zn,Ni)(O,S) host lattice. We found the incorporation with a small amount of cobalt into (ZnNi)(O,S) enhanced its photo activity for hydrogen production. The best hydrogen production was achieved for 2.5% Co-(ZnNi)(O,S) with a rate of 8,527 μmol/g·h during a span of 5 h in a 20% (v/v) ethanol/water solution. Based on the results of optical characterizations, the enhancement of hydrogen production was caused by the slow electron-hole recombination and the low charge transfer resistance. A different photocatalytic kinetic mechanism for hydrogen generation from the conventional one with the simultaneous formation of hydrogen and oxygen gases is proposed, based upon the activated surface oxygen anion to initiate or trigger the key reaction of oxidation for water splitting to proceed. Our strategy in preparing catalyst at low process temperature and in doping to activate catalyst is for weakening the lattice oxygen bonding on the catalyst surface in order to firstly initiate the oxidation reaction and the formation of oxygen vacancies. These freshly formed oxygen vacancies play a critical role to trap the water and weaken its OH bonding to form hydrogen gas through the reduction reaction.  相似文献   
76.
In this article, a ternary WO3/g‐C3N4@ BiVO4 composites were prepared using eco‐friendly hydrothermal method to produce efficient hydrogen energy through water in the presence of sacrificial agents. The prepared samples were characterized by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), ultraviolet‐visible (UV‐vis), Brunauer‐Emmett‐Teller (BET) surface area, and photoluminescence spectroscopy (PL) emission spectroscopy. The experimental study envisages the formation of 2‐D nanostructures and observed that such kinds of nanostructures could provide more active sites for photocatalytic reduction of water and their inherent reactive‐species mechanism. The results showed the excellent photocatalytic performance (432 μmol h?1 g?1) for 1.5% BiVO4 nanoparticles in WO3/g‐C3N4 composite when compared with pure WO3 and BiVO4. The optical properties and photocatalytic activity measurement confirmed that BiVO4 nanoparticles in WO3/g‐C3N4 photocatalyst inhibited the recombination of photogenerated electron and holes and enhanced the reduction reactions for H2 production. The enhanced photocatalytic efficiency of the composite nanostructures may be attributed to wide absorption region of visible light, large surface area, and efficient separation of electrons/holes pairs owing to synergistic effects between BiVO4 and WO3/g‐C3N4. The prepared samples would be a precise optimal photocatalyst to increase their suppliers for worldwide applications especially in energy harvesting.  相似文献   
77.
78.
Energy consumption for developing countries is sharply increasing due to the higher economic growth due to industrialisation along with population growth and urbanisation. The increasing demand of energy leads to global energy crisis. Selecting the best energy technology and conservation requires both quantitative and qualitative evaluation criteria. The fuzzy set-based approach is one of the well-known theories to handle fuzziness, uncertainty in decision-making and vagueness of information. This paper proposes a new method of intuitionistic fuzzy analytic hierarchy process (IF-AHP) to deal with the uncertainty in decision-making. The new IF-AHP is applied to establish a preference in the sustainable energy planning decision-making problem. Three decision-makers attached with Malaysian government agencies were interviewed to provide linguistic judgement prior to analysing with the new IF-AHP. Nuclear energy has been decided as the best alternative in energy planning which provides the highest weight among all the seven alternatives.  相似文献   
79.
In this work we demonstrate, for the first time, the use of polylactic acid (PLA) as a biodegradable host matrix for the construction of the active emissive layer of organic light‐emitting diode (OLED) devices for potential use in bioelectronics. In this preliminary study, we report a robust synthesis of two fluorescent PLA derivatives, pyrene‐PLA ( AH10 ) and perylene‐PLA ( AH11 ). These materials were prepared by the ring opening polymerisation of l ‐lactide with hydroxyalkyl‐pyrene and hydroxyalkyl‐perylene derivatives using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as catalyst. OLEDs were fabricated from these materials using a simple device architecture involving a solution‐processed single‐emitting layer in the configuration ITO/PEDOT:PSS/PVK:OXD‐7 (35%): AH10 or AH11 (20%)/TPBi/LiF/Al (ITO, indium tin oxide; PEDOT:PSS, poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid); PVK, poly(vinylcarbazole); OXD‐7, (1,3‐phenylene)‐bis‐[5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole]; TPBi, 2,2′,2″‐(1,3,5‐benzenetriyl)tris(1‐phenyl‐1H‐benzimidazole)). The turn‐on voltage for the perylene OLED at 10 cd m–2 was around 6 V with a maximum brightness of 1200 cd m–2 at 13 V. The corresponding external quantum efficiency and device current efficiency were 1.5% and 2.8 cd A–1 respectively. In summary, this study provides proof of principle that OLEDs can be constructed from PLA, a readily available and renewable bio‐source. © 2020 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号