首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   42篇
  国内免费   2篇
电工技术   2篇
化学工业   214篇
金属工艺   12篇
机械仪表   9篇
建筑科学   17篇
矿业工程   2篇
能源动力   20篇
轻工业   36篇
水利工程   2篇
石油天然气   1篇
无线电   19篇
一般工业技术   62篇
冶金工业   12篇
原子能技术   2篇
自动化技术   125篇
  2024年   2篇
  2023年   6篇
  2022年   47篇
  2021年   73篇
  2020年   21篇
  2019年   19篇
  2018年   28篇
  2017年   28篇
  2016年   34篇
  2015年   30篇
  2014年   26篇
  2013年   32篇
  2012年   30篇
  2011年   35篇
  2010年   18篇
  2009年   20篇
  2008年   19篇
  2007年   11篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有535条查询结果,搜索用时 31 毫秒
81.
The use of plants as traditional medicines is common and has prevailed in many different cultures over time. Polymethoxyflavones (PMFs) are natural polyphenols from the group of flavonoids. Zapotin, a member of the PMFs, is found mainly in citrus plants and is almost exclusively limited to their peels. The chemical structure of zapotin has been questioned from the very beginning, since the structure of flavonoids with a single oxygen atom in the C2′ position is extremely rare in the plant kingdom. To clarify this, the structural determination and bio-inspired synthesis of zapotin are discussed in detail in this review. Due to the broad biological potential of PMFs, the complication in the isolation process and characterization of PMFs, as well as their purification, have been estimated by adapting various chromatographic methods. According to available data from the literature, zapotin may be a promising curative agent with extensive biological activities, especially as a chemopreventive factor. Apart from that, zapotin acts as an antidepressant-like, anticancer, antifungal, and antioxidant agent. Finally, accessible studies about zapotin metabolism (absorption, distribution, metabolism, excretion, and toxicity) underline its potential in use as a therapeutic substance.  相似文献   
82.
G protein-coupled receptor 55 (GPR55) is a recently deorphanized lipid- and peptide-sensing receptor. Its lipidic endogenous agonists belong to lysoglycerophospholipids, with lysophosphatidylinositol (LPI) being the most studied. Peptide agonists derive from fragmentation of pituitary adenylate cyclase-activating polypeptide (PACAP). Although GPR55 and its ligands were implicated in several physiological and pathological conditions, their biological function remains unclear. Thus, the aim of the study was to conduct a large-scale re-analysis of publicly available gene expression datasets to identify physiological and pathological conditions affecting the expression of GPR55 and the production of its ligands. The study revealed that regulation of GPR55 occurs predominantly in the context of immune activation pointing towards the role of the receptor in response to pathogens and in immune cell lineage determination. Additionally, it was revealed that there is almost no overlap between the experimental conditions affecting the expression of GPR55 and those modulating agonist production. The capacity to synthesize LPI was enhanced in various types of tumors, indicating that cancer cells can hijack the motility-related activity of GPR55 to increase aggressiveness. Conditions favoring accumulation of PACAP-derived peptides were different than those for LPI and were mainly related to differentiation. This indicates a different function of the two agonist classes and possibly the existence of a signaling bias.  相似文献   
83.
Searching for effects of candidate gene polymorphisms on fatness traits is an important goal for pig industry. In this study we evaluated polymorphism of four porcine genes involved in energy metabolism (RETN, UCP1, UCP3 and ADRB3). Moreover, their association with fat deposition traits was analyzed in two breeds (Polish Landrace, Polish Large White) and a Polish synthetic line (L990). Altogether, five SNPs were identified, including two novel ones in the 5′-flanking region of the RETN gene and a novel missense substitution in the UCP3. Distribution of these polymorphisms in the studied five breeds and the synthetic line was not uniform. Two of the analyzed SNPs: g.−178G > A in the RETN and g.946C > T in the UCP3 gene revealed a significant association with abdominal fat weight or backfat thickness. Such associations were not observed for the UCP1 or ADRB3 gene polymorphisms. Our study showed that polymorphisms of the UCP3 and RETN genes are potentially associated with porcine fatness traits.  相似文献   
84.
Extrusion of immiscible polymers under special conditions can lead to creation of microfibrillar‐phase morphology, ensuring significant increase of mechanical properties of polymer profiles. Polyethylene/polypropylene blend extrudates with microfibrillar‐phase morphology (polypropylene microfibrils reinforcing polyethylene matrix phase) were prepared through continuous extrusion with semihyperbolic‐converging die enabling elongation and orientation of microfibrils in flow direction. Structure of extruded profiles was examined using electron microscopy and wide‐angle X‐ray scattering. Tensile tests proved that extrudates with microfibrillar‐phase morphology show significantly higher mechanical properties than the conventional extrudates. The presented concept offers possibility of replacing the existing expensive multi‐component medical devices with fully polymeric tools. POLYM. COMPOS., 31:1427–1433, 2010. © 2009 Society of Plastics Engineers  相似文献   
85.
Commercial MgAlZn alloy AZ31 was processed by hot extrusion and equal channel angular pressing (ECAP) known as EX-ECAP. Microstructure and defect structure evolution with strain due to ECAP were investigated by TEM, positron annihilation spectroscopy (PAS), and X-ray diffraction. Significant grain refinement was obtained by EX-ECAP. In the extruded condition relatively low density of dislocations was determined by PAS. Sharp increase of dislocation density occurred during the first two passes of ECAP, followed by the saturation and even a decline manifesting the dynamic recovery at higher strains. XRD line profile analysis confirmed the results of PAS with slightly higher values of dislocation densities in individual conditions. Detailed analysis of contrast factors allows to determine the type of dislocations and to draw conclusions about slip activation and its variations with strain. The influence of microstructure evolution on mechanical properties is discussed.  相似文献   
86.
Lithium bis(fluorosulfonyl)imide (LiFSI) in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was successfully tested as an electrolyte for graphite composite anodes at elevated temperature of 55 °C. The graphite anode showed a good cyclability during the galvanostatic testing at C/10 rate and 55 °C with the capacity close to theoretical. The formation of SEI in different electrolytes was the subject of study using impedance spectroscopy on symmetrical cells containing two lithium electrodes. The 0.7 m LiFSI in PYR14TFSI exhibits a good ionic conductivity (5.9 mS cm−1 at 55 °C) along with high electrochemical stability and high thermal stability. These properties allow their potential application in large-scale lithium ion batteries with improved safety.  相似文献   
87.
88.
Superior electrical properties of carbon nanotubes were utilized by the authors in the fabrication of printed resistors. In common applications such as electrodes or sensors, only basic electrical and mechanical properties are investigated, leaving aside other key parameters related to the stability and reliability of particular elements. In this paper we present experimental results on the properties of printed resistive layers. One of the most important issues is their stability under high currents creating excessive thermal stresses. In order to investigate such behavior, a high direct current stress test was performed along with the observation of temperature distribution that allowed us to gain a fundamental insight into the electrical behavior at such operating conditions. These experiments allowed us to observe parametric failure or catastrophic damage that occurred under excessive supply parameters. Electrical parameters of all investigated samples remained stable after applying currents inducing an increase in temperature up to 130 °C and 200 °C. For selected samples, catastrophic failure was observed at the current values inducing temperature above 220 °C and 300 °C but in all cases the failure was related to the damage of PET or alumina substrate. Additional experiments were carried out with short high voltage pulse stresses. Printed resistors filled with nanomaterials sustained similar voltage levels (up to 750 V) without changing their parameters, while commonly used graphite filled polymer resistors changed their resistance value.  相似文献   
89.
Flow unsteadiness is a typical feature of both combined and storm sewer flow. The following study therefore deals with both theoretical and experimental investigations of the steady uniform and transient turbulent open-channel flows in a circular conduit with smooth walls as well as over rough sediment deposits. The aim of the study is to define the relationship between flow unsteadiness and selected flow/turbulence characteristics estimated in a circular tube running partially full using the ultrasonic velocity profiler (UVP) method. The temporal/spatial turbulence intensities and the Reynolds stress distribution were identified in the mid-vertical of the pipe. Generally, the absolute values of turbulent characteristics are larger in the rising branch of the hydrograph than in the descending one for the same flow depths. This difference in absolute values is related to the flow equilibrium parameter. Furthermore, the influence of the sediment bed on selected flow/turbulence variables was studied. The results show a strong impact of cross-section geometry on local values of friction velocity, i.e. bottom shear stress, along the wetted perimeter of the channel cross-section. Interestingly, their relative values decreased along with an increase in flow depth.  相似文献   
90.
To further lower production costs and increase conversion efficiency of thin‐film silicon solar modules, challenges are the deposition of high‐quality microcrystalline silicon (μc‐Si:H) at an increased rate and on textured substrates that guarantee efficient light trapping. A qualitative model that explains how plasma processes act on the properties of μc‐Si:H and on the related solar cell performance is presented, evidencing the growth of two different material phases. The first phase, which gives signature for bulk defect density, can be obtained at high quality over a wide range of plasma process parameters and dominates cell performance on flat substrates. The second phase, which consists of nanoporous 2D regions, typically appears when the material is grown on substrates with inappropriate roughness, and alters or even dominates the electrical performance of the device. The formation of this second material phase is shown to be highly sensitive to deposition conditions and substrate geometry, especially at high deposition rates. This porous material phase is more prone to the incorporation of contaminants present in the plasma during film deposition and is reported to lead to solar cells with instabilities with respect to humidity exposure and post‐deposition oxidation. It is demonstrated how defective zones influence can be mitigated by the choice of suitable plasma processes and silicon sub‐oxide doped layers, for reaching high efficiency stable thin film silicon solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号