Biochemical sensors for continuous monitoring require dependable periodic self diagnosis with acceptable simplicity to check its functionality during operation. An in-situ self-diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built-in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis, depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen-depleting phases. The use of these microenvironments for in-situ self-calibration is discussed to achieve functional integration, as well as structural integration, of the microsensor system. 相似文献
The extraction of penicillin G from simulated media was performed by water/oil/water (w/o/w) emulsion liquid membranes (ELMs) and studied under various operational conditions in a batch system. The degree of extraction achieved was between 80% and 95% under specific conditions. A concentration of greater than nine times the initial concentration of penicillin G in the external phase was obtained in the internal phase. The pH of the internal aqueous solution, containing a basic salt, was theoretically calculated on the basis of the amount of penicillin G transported into the internal phase. The calculated results agreed with the experimental data well and were used to select a suitable type and concentration of a basic salt in the internal phase to give a pH within the range 5 to 8 where penicillin G was stable after the termination of extraction. The extraction of penicillin G was successfully performed by the ELM process with sodium carbonate in the internal phase. 相似文献
This paper concerns the following problem: given a set of multi-attribute records, a fixed number of buckets and a two-disk system, arrange the records into the buckets and then store the buckets between the disks in such a way that, over all possible orthogonal range queries (ORQs), the disk access concurrency is maximized. We shall adopt the multiple key hashing (MKH) method for arranging records into buckets and use the disk modulo (DM) allocation method for storing buckets onto disks. Since the DM allocation method has been shown to be superior to any other allocation methods for allocating an MKH file onto a two-disk system for answering ORQs, the real issue is knowing how to determine an optimal way for organizing the records into buckets based upon the MKH concept.
A performance formula that can be used to evaluate the average response time, over all possible ORQs, of an MKH file in a two-disk system using the DM allocation method is first presented. Based upon this formula, it is shown that our design problem is related to a notoriously difficult problem, namely the Prime Number Problem. Then a performance lower bound and an efficient algorithm for designing optimal MKH files in certain cases are presented. It is pointed out that in some cases the optimal MKH file for ORQs in a two-disk system using the DM allocation method is identical to the optimal MKH file for ORQs in a single-disk system and the optimal average response time in a two-disk system is slightly greater than one half of that in a single-disk system. 相似文献
A circuit model for optical and electrical feedback has been developed to investigate the cause of negative differential resistance (NDR) switching in a series connected heterojunction phototransistor (HPT) light-emitting diode (LED) device. The model considers optical feedback from the light generated in the LED, electrical feedback from the holes thermally emitted over the LED cladding layer, nonlinear gain of the HPT, the Early effect, and leakage resistance. The analysis shows that either electrical or optical feedback can be the dominant cause for the NDR, depending upon their relative strengths. The NDR observed in the devices was caused primarily by electrical feedback since the optical feedback is weak. For low input power, avalanche breakdown appears to initiate the NDR in the devices although avalanching alone cannot cause NDR 相似文献
Abstract. The concepts of time invariance, stationarity, non-stationarity and immemorial time are considered for state space models (SSMs). Necessary and sufficient conditions for stationarity are given and connected with standard conditions. Expressions are given for the unconditional mean and covariance matrix of the state of a time-immemorial SSM. Application of the results is made to a variety of theoretical and empirical models and the initialization of the Kalman filter in the non-stationary case and for the ARIMA ( p, d, q ) model. 相似文献