首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   30篇
电工技术   4篇
化学工业   67篇
金属工艺   14篇
机械仪表   16篇
建筑科学   3篇
能源动力   21篇
轻工业   37篇
水利工程   2篇
无线电   146篇
一般工业技术   84篇
冶金工业   16篇
原子能技术   2篇
自动化技术   43篇
  2024年   2篇
  2023年   6篇
  2022年   9篇
  2021年   11篇
  2020年   14篇
  2019年   3篇
  2018年   21篇
  2017年   15篇
  2016年   16篇
  2015年   11篇
  2014年   22篇
  2013年   26篇
  2012年   26篇
  2011年   33篇
  2010年   28篇
  2009年   21篇
  2008年   29篇
  2007年   13篇
  2006年   11篇
  2005年   12篇
  2004年   9篇
  2003年   7篇
  2002年   15篇
  2001年   16篇
  2000年   9篇
  1999年   7篇
  1998年   9篇
  1997年   3篇
  1996年   9篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
排序方式: 共有455条查询结果,搜索用时 15 毫秒
41.
42.
Since just‐in‐time (JIT) has considerable overhead to detect hot spots and compile them at runtime, using sophisticated optimization techniques for embedded devices means that any resulting performance improvements will be limited. In this paper, we introduce a novel static Dalvik bytecode optimization framework, as a complementary compilation of the Dalvik virtual machine, to improve the performance of Android applications. Our system generates optimized Dalvik bytecodes by using Low Level Virtual Machine (LLVM). A major obstacle in using LLVM for optimizing Dalvik bytecodes is determining how to handle the high‐level language features of the Dalvik bytecode in LLVM IR and how to optimize LLVM IR conforming to the language information of the Dalvik bytecode. To this end, we annotate the high‐level language features of Dalvik bytecode to LLVM IR and successfully optimize Dalvik bytecodes through instruction selection processes. Our experimental results show that our system with JIT improves the performance of Android applications by up to 6.08 times, and surpasses JIT by up to 4.34 times.  相似文献   
43.
Recently, we have witnessed the gradual miniaturization of electronic devices. In miniaturized devices, flip‐chip bonding has become a necessity over other bonding methods. For the electrical connections in miniaturized devices, fine‐pitch solder bumping has been widely studied. In this study, high‐volume solder‐on‐pad (HV‐SoP) technology was developed using a novel maskless printing method. For the new SoP process, we used a special material called a solder bump maker (SBM). Using an SBM, which consists of resin and solder powder, uniform bumps can easily be made without a mask. To optimize the height of solder bumps, various conditions such as the mask design, oxygen concentration, and processing method are controlled. In this study, a double printing method, which is a modification of a general single printing method, is suggested. The average, maximum, and minimum obtained heights of solder bumps are 28.3 μm, 31.7 μm, and 26.3 μm, respectively. It is expected that the HV‐SoP process will reduce the costs for solder bumping and will be used for electrical interconnections in fine‐pitch flip‐chip bonding.  相似文献   
44.
As an isotropic conductive adhesive, that is, a hybrid Cu paste composed of Cu powder, solder powder, and a fluxing resin system, has been quantitatively characterized. The mechanism of an electrical connection based on a novel concept of electrical conduction is experimentally characterized using an analysis of a differential scanning calorimeter and scanning electron microscope energy‐dispersive X‐ray spectroscopy. The oxide on the metal surface is sufficiently removed with an increase in temperature, and intermetallic compounds between the Cu and melted solder are simultaneously generated, leading to an electrical connection. The reliability of the hybrid Cu paste is experimentally identified and compared with existing Ag paste. As an example of a practical application, the hybrid Cu paste is used for LED packaging, and its electrical and thermal performances are compared with the commercialized Ag paste. In the present research, it is proved that, except the optical function, the electrical and thermal performances are similar to pre‐existing Ag paste. The hybrid Cu paste could be used as an isotropic conductive adhesive due to its low production cost.  相似文献   
45.
The authors designed and manufactured a toroidal-type superconducting magnetic energy storage (SMES) system. The toroidal-type SMES was designed using a 3D CAD program. The toroidal-type magnet consists of 30 double pancake coils (DPCs). The single pancake coils (SPCs), which constitute the double pancake coils, are arranged at an angle of 6° from each other, based on the central axis of the toroidal-type magnet. The cooling method used for the toroidal-type SMES is the conduction cooling type. When the cooling method for the toroidal-type SMES was designed, the two-stage Gifford–McMahon (GM) refrigerator was considered. The Bi-2223 HTS wire, which was made by soldering brass on both sides of the superconductor, is used for the magnet winding. Finally, the authors connected the toroidal-type SMES to a real-time digital simulator (RSCAD/RTDS) to simulate voltage sag compensation in a power utility.  相似文献   
46.
Triarylamine-based dual-function coadsorbents containing a carboxylic acid acceptor linked by extended π-conjugation aryl linkers (e.g., phenylene: HC-A3, naphthalene: HC-A4 and anthracene: HC-A5) were newly designed and synthesized. They were used as coadsorbents in organic dye-sensitized solar cells (DSSCs) based on a porphyrin dye (hexyloxy-biphenyl-ZnP-CN-COOH (HOP)). For comparison, the π-conjugated phenyl linker (HC-A3) previously developed by our group was also used as a coadsorbent. The structural effects on the photophysical and electrochemical properties and DSSC performance were systematically investigated. As a result, the DSSCs based on HC-A4 and HC-5 displayed power conversion efficiencies (PCEs) of 8.2% and 5.1%, respectively, while the HC-A3-based DSSC achieved a PCE of 7.7%. In the case of HC-A4, both the short-circuit photocurrent densities (Jsc) and open-circuit voltages (Voc) of DSSCs were simultaneously improved to a large extent due to the more effective prevention of π−π stacking of organic dye molecules and the better light-harvesting effect at short wavelengths. The HC-A5-based DSSC exhibited a much lower short-circuit current (Jsc) and open-circuit voltages (Voc) compared to the HC-A4-based DSSC, due to the fact that the dihedral angle of the π-conjugated linkers was too high for electron injection into the TiO2 conduction band (CB) level. This had a reduced effect on preventing the π−π stacking of dye molecules, resulting in lower Jsc and Voc values.  相似文献   
47.
Smart TV is expected to bring cloud services based on virtualization technologies to the home environment with hardware and software support. Although most physical resources can be shared among virtual machines (VMs) using a time sharing approach, allocating the proper amount of memory to VMs is still challenging. In this paper, we propose a novel mechanism to dynamically balance the memory allocation among VMs in virtualized Smart TV systems. In contrast to previous studies, where a virtual machine monitor (VMM) is solely responsible for estimating the working set size, our mechanism is symbiotic. Each VM periodically reports its memory usage pattern to the VMM. The VMM then predicts the future memory demand of each VM and rebalances the memory allocation among the VMs when necessary. Experimental results show that our mechanism improves performance by up to 18.28 times and reduces expensive memory swapping by up to 99.73% with negligible overheads (0.05% on average).  相似文献   
48.
For the fine‐pitch application of flip‐chip bonding with semiconductor packaging, fluxing and hybrid underfills were developed. A micro‐encapsulated catalyst was adopted to control the chemical reaction at room and processing temperatures. From the experiments with a differential scanning calorimetry and viscometer, the chemical reaction and viscosity changes were quantitatively characterized, and the optimum type and amount of micro‐encapsulated catalyst were determined to obtain the best pot life from a commercial viewpoint. It is expected that fluxing and hybrid underfills will be applied to fine‐pitch flip‐chip bonding processes and be highly reliable.  相似文献   
49.
Despite advances in medicine, mortality due to sepsis has not decreased. Pulsed electromagnetic field (PEMF) therapy is emerging as an alternative treatment in many inflammation-related diseases. However, there are few studies on the application of PEMF therapy to sepsis. In the current study, we examined the effect of PEMF therapy on a mouse model of lipopolysaccharide (LPS)-induced septic shock. Mice injected with LPS and treated with PEMF showed higher survival rates compared with the LPS group. The increased survival was correlated with decreased levels of pro-inflammatory cytokine mRNA expression and lower serum nitric oxide levels and nitric oxide synthase 2 mRNA expression in the liver compared with the LPS group. In the PEMF + LPS group, there was less organ damage in the liver, lungs, spleen, and kidneys compared to the LPS group. To identify potential gene targets of PEMF treatment, microarray analysis was performed, and the results showed that 136 genes were up-regulated, and 267 genes were down-regulated in the PEMF + LPS group compared to the LPS group. These results suggest that PEMF treatment can dramatically decrease septic shock through the reduction of pro-inflammatory cytokine gene expression. In a clinical setting, PEMF may provide a beneficial effect for patients with bacteria-induced sepsis and reduce septic shock-induced mortality.  相似文献   
50.
Ferroelectric materials are used in applications ranging from energy harvesting to high-power electronic transducers. However, industry-standard ferroelectric materials contain lead, which is toxic and environmentally unfriendly. The preferred alternative, BaTiO(3), is non-toxic and has excellent ferroelectric properties, but its Curie temperature of ~130 °C is too low to be practical. Strain has been used to enhance the Curie temperature of BaTiO(3) (ref. 4) and SrTiO(3) (ref. 5) films, but only for thicknesses of tens of nanometres, which is not thick enough for many device applications. Here, we increase the Curie temperature of micrometre-thick films of BaTiO(3) to at least 330 °C, and the tetragonal-to-cubic structural transition temperature to beyond 800 °C, by interspersing stiff, self-assembled vertical columns of Sm(2)O(3) throughout the film thickness. The columns, which are 10 nm in diameter, strain the BaTiO(3) matrix by 2.35%, forcing it to maintain its tetragonal structure and resulting in the highest BaTiO(3) transition temperatures so far.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号