首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   2篇
电工技术   15篇
化学工业   42篇
金属工艺   10篇
机械仪表   9篇
建筑科学   4篇
能源动力   14篇
轻工业   18篇
水利工程   1篇
石油天然气   2篇
无线电   65篇
一般工业技术   72篇
冶金工业   52篇
自动化技术   10篇
  2024年   5篇
  2023年   4篇
  2022年   3篇
  2021年   16篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   9篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   19篇
  2012年   5篇
  2011年   18篇
  2010年   7篇
  2009年   5篇
  2008年   15篇
  2007年   4篇
  2006年   6篇
  2005年   7篇
  2004年   8篇
  2003年   10篇
  2002年   13篇
  2001年   12篇
  2000年   7篇
  1999年   5篇
  1998年   9篇
  1997年   16篇
  1996年   7篇
  1995年   4篇
  1994年   9篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   1篇
  1989年   6篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   5篇
  1973年   1篇
  1969年   1篇
排序方式: 共有314条查询结果,搜索用时 0 毫秒
91.
The optimum length of a monolith tube is one for which near-hundred percent conversion is attained, and at the same time, the catalyst over the entire length of the tube is utilized. In practice, the length is adjusted by stacking monolith plugs end-to-end. In this study, the repercussions of such a practice are investigated numerically with the goal to determine if a tube of length 2L demonstrates the same behavior as two tubes of length L each, stacked end-to-end. Catalytic combustion of methane–air mixture on a platinum catalyst is considered. The studies are conducted using a multi-step reaction mechanism involving 24 surface reactions between 19 species. Two different materials are considered for the walls of the monolith tube, namely silicon carbide and cordierite. Both steady state and transient simulations are performed. Results indicate that the ignition and blowout limits can be significantly different between split and continuous tubes when the wall is made up of a high thermal conductivity material, such as silicon carbide. For steady state combustion, for both wall materials, the point of attachment of the flame to the wall is altered by splitting the tube—the effect being more pronounced for silicon carbide and at relatively high Reynolds numbers. These results imply that axial heat conduction, or lack thereof due to thermal contact resistance, through the walls of the monolith results in thermal non-equilibrium between the solid and fluid phase, and subsequently affects ignition and flame stability in catalytic combustion.  相似文献   
92.
93.
    
Flaring is a major concern in the oil and gas industry as it wastes valuable raw materials/energy and emits a substantial amount of air pollutants. The produced water treatment during oil and gas production is very troublesome due to its large processing volume, high salinity, and expensive disposal cost. Thus, the on-site integration of the flaring gas recovery (FGR) and desalination processes for handling the produced water could not only monetize flare emission sources but could also generate freshwater for versatile usages. Here, a novel process was developed integrating the ejector-based FGR (EFGR) process with the thermal vapor compression (TVC)-based desalination process. The newly developed EFGR-TVC process is shown to be technically viable and cost-effective under normal operating conditions.  相似文献   
94.
    
The main aim of this study is to select the optimal set of genes from microarray cancer datasets that contribute to the prediction of specific cancer types. This study proposes the enhancement of the feature selection filter algorithm based on Joe's normalized mutual information and its use for gene selection. The proposed algorithm is implemented and evaluated on seven benchmark microarray cancer datasets, namely, central nervous system, leukemia (binary), leukemia (3 class), leukemia (4 class), lymphoma, mixed lineage leukemia, and small round blue cell tumor, using five well‐known classifiers, including the naive Bayes, radial basis function network, instance‐based classifier, decision‐based table, and decision tree. An average increase in the prediction accuracy of 5.1% is observed on all seven datasets averaged over all five classifiers. The average reduction in training time is 2.86 seconds. The performance of the proposed method is also compared with those of three other popular mutual information–based feature selection filters, namely, information gain, gain ratio, and symmetric uncertainty. The results are impressive when all five classifiers are used on all the datasets.  相似文献   
95.
96.
Vanadium multiredox-based NASICON-NazV2−yMy(PO4)3 (3 ≤ z ≤ 4; M = Al3+, Cr3+, and Mn2+) cathodes are particularly attractive for Na-ion battery applications due to their high Na insertion voltage (>3.5 V vs Na+/Na0), reversible storage capacity (≈150 mA h g−1), and rate performance. However, their practical application is hindered by rapid capacity fade due to bulk structural rearrangements at high potentials involving complex redox and local structural changes. To decouple these factors, a series of Mg2+-substituted Na3+yV2−yMgy(PO4)3 (0 ≤ y ≤ 1) cathodes is studied for which the only redox-active species is vanadium. While X-ray diffraction (XRD) confirms the formation of solid solutions between the y = 0 and 1 end members, X-ray absorption spectroscopy and solid-state nuclear magnetic resonance reveal a complex evolution of the local structure upon progressive Mg2+ substitution for V3+. Concurrently, the intercalation voltage rises from 3.35 to 3.45 V, due to increasingly more ionic V O bonds, and the sodium (de)intercalation mechanism transitions from a two-phase for y ≤ 0.5 to a solid solution process for y ≥ 0.5, as confirmed by in operando XRD, while Na-ion diffusion kinetics follow a nonlinear trend across the compositional series.  相似文献   
97.
    
Self-propulsion of highly wetting liquids is important in heat exchanger, air conditioning, and refrigeration systems. However, it is challenging to achieve such a spontaneous motion as these liquids tend to wet all the surfaces due to their ultralow surface tensions. Despite that extensive asymmetric surface structures and gradient chemical coatings are developed for directional droplet transport, they will be flooded and covered by these liquids. Here, this challenge is addressed by creating a gradient quasi-liquid surface to achieve the self-propulsion of droplets with surface tensions down to 10.0 mN m−1. Such a surface engineered by tethering flexible polymers with gradient grafting density shows ultralow contact angle hysteresis (<1o) to highly wetting liquids. Thus, the surface can simultaneously provide sufficient driving forces through the gradient wettability and negligible retention forces through the slippery boundary lubrication for spontaneous droplet movement. Moreover, continual self-propulsion of tiny droplets is achieved by spraying highly wetting liquids in simulated condensation conditions and demonstrates that adding temperature gradient can further accelerate the self-propulsion. The study provides a new paradigm to promote passive removal of highly wetting droplets, leading to potential impacts in enhancing condensation heat transfer regardless of surface orientations.  相似文献   
98.
Hong HC  Mazumder A  Wong MH  Liang Y 《Water research》2008,42(20):4941-4948
The major objective of the present study was to investigate the contribution of major biomolecules, including protein, carbohydrates and lipids, in predicting DBPs formation upon chlorination of algal cells. Three model compounds, including bovine serum albumin (BSA), starch and fish oil, as surrogates of algal-derived proteins, carbohydrates and lipids, and cells of three algae species, representing blue-green algae, green algae, and diatoms, were chlorinated in the laboratory. The results showed that BSA (27 μg mg−1 C) and fish oil (50 μg mg−1 C) produced more than nine times higher levels of chloroform than starch (3 μg mg−1 C). For the formation of HAAs, BSA was shown to have higher reactivity (49 μg mg−1 C) than fish oil and starch (5 μg mg−1 C). For the algal cells, Nitzschia sp. (diatom) showed higher chloroform yields (48 μg mg−1 C) but lower HAA yields (43 μg mg−1 C) than Chlamydomonas sp. (green algae) (chloroform: 34 μg mg−1 C; HAA: 62 μg mg−1 C) and Oscillatoria sp. (blue-green algae) (chloroform: 26 μg mg−1 C; HAA: 72 μg mg−1 C). The calculated chloroform formation of cells from the three algal groups, based on their biochemical compositions, was generally consistent with the experimental data, while the predicted values for HAAs were significantly lower than the observed ones. As compared to humic substances, such as humic and fulvic acids, the algal cells appeared to be important precursors of dichloroacetic acid.  相似文献   
99.
This paper presents a hybrid control system that is able to improve dimensional accuracy of geometrically complex parts manufactured by direct metal deposition process. The melt pool height is monitored by three high-speed charged couple device cameras in a triangulation setup. The melt pool temperature is monitored by a dual-color pyrometer. A two-input single-output hybrid control system including a master height controller and a slave temperature controller is used to control both height growth and melt pool temperature at each deposition layer. The height controller is a rule-based controller and the temperature controller uses a generalized predictive control algorithm with input constraints. When the melt pool height is above a prescribed layer thickness, the master height controller blocks control actions from the temperature controller and decreases laser power to avoid over-building. When the melt pool height is below the prescribed layer thickness, the temperature controller bypasses the height controller and dynamically adjusts laser power to control the melt pool temperature. This hybrid controller is able to achieve stable layer growth by avoiding both over-building and under-building through heat input control. A complex 3-D turbine blade with improved geometrical accuracy is demonstrated using the hybrid control system.  相似文献   
100.
Hurley T  Sadiq R  Mazumder A 《Water research》2012,46(11):3544-3552
Protecting drinking source water quality is a critical step in ensuring a safe supply of drinking water. Increasingly, drinking source water protection programs rely on the active participation of various stakeholders with differing degrees of water science knowledge. A drinking source water quality index presents a potential communication and analysis tool to facilitate cooperation between diverse interest groups as well as represent composite water quality. We tested the effectiveness of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) in capturing expert assessments of drinking water quality. In cooperation with a panel of drinking water quality experts we identified a core set of parameters to reflect common source water concerns. Drinking source water target values were drafted for use in the index corresponding to two basic treatment levels. Index scores calculated using the core parameter set and associated source water target values were strongly correlated with expert assessments of water quality. We recommend a modified index calculation procedure to accommodate parameters measured at different frequencies within any particular study period. The resulting drinking source water CCME WQI provides a valuable means of monitoring, communicating, and understanding surface source water quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号