首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   727篇
  免费   25篇
  国内免费   3篇
电工技术   29篇
综合类   1篇
化学工业   190篇
金属工艺   19篇
机械仪表   13篇
建筑科学   30篇
矿业工程   1篇
能源动力   34篇
轻工业   77篇
水利工程   1篇
无线电   37篇
一般工业技术   169篇
冶金工业   63篇
原子能技术   20篇
自动化技术   71篇
  2023年   5篇
  2022年   10篇
  2021年   20篇
  2020年   5篇
  2019年   13篇
  2018年   17篇
  2017年   10篇
  2016年   21篇
  2015年   14篇
  2014年   22篇
  2013年   36篇
  2012年   29篇
  2011年   60篇
  2010年   48篇
  2009年   28篇
  2008年   26篇
  2007年   46篇
  2006年   32篇
  2005年   30篇
  2004年   27篇
  2003年   33篇
  2002年   18篇
  2001年   10篇
  2000年   19篇
  1999年   13篇
  1998年   25篇
  1997年   12篇
  1996年   14篇
  1995年   6篇
  1994年   18篇
  1993年   9篇
  1992年   11篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   9篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   5篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有755条查询结果,搜索用时 62 毫秒
31.
To clarify the dielectric properties of BaTiO3 with nanometer size region, it is necessary to fabricate the dense structure composed of BaTiO3 nanoparticles. In the present study, BaTiO3 nanoparticles were directly deposited on Pt/Al2O3/SiO2/Si substrate by introducing Ba(DPM)2 and Ti(OiPr)4 into an inductively coupled plasma (ICP). The optimal condition for preparing dense structure of BaTiO3 nanoparticles was investigated by changing the substrate temperature. Single phase BaTiO3 of perovskite structure was obtained at the substrate temperatures between 773 and 1173 K. The dense structure of BaTiO3 nanoparticles with particle sizes of about 30 nm was successfully obtained at the substrate temperature of 773 K. At the substrate temperature>873 K, the deposited nanoparticles sintered to be the columnar structure. The εr and tan δ of the BaTiO3 nanoparticles were estimated to be 285 and 6.6%, respectively (1 kHz and 100 mV). The phase of the BaTiO3 nanoparticles were found to be paraelectric by the measurement of C-V curves. The breakdown field of the dense structure of BaTiO3 nanoparticles was estimated to be 649 kV/cm according to I-V curves. These features are favorable for applying the structure to the dielectric layer of multilayer capacitors.  相似文献   
32.
A carbon nanoencapsulate has a polyhedral outer shell of nested, concentric layers of carbon. The shell defines an internal cavity where a metal is encapsulated. Although the rare-earth carbides readily hydrolyze in moist air, the carbides in these carbon shells did not degrade after exposure to air for considerable lengths of time. This means that the carbide particle is physically enclosed within the carbon cavity completely, and the cavity protects it perfectly against attack of water molecules. Considering intrinsic chemical stability of carbon under oxygen free condition, this structure may be a perfect barrier to extremely long-term release of radionuclides. Because encapsulation of LaC2 within carbon nanoparticles increased drastically from by-product to major product, it would be possible to find the optimized condition that complete encapsulation is achieved. Intrinsic stability of carbon and carbon coated waste nanoparticles may provide an improved barrier to radionuclide release by groundwater.  相似文献   
33.
Recent progress in the de novo design of self-assembling peptides has enabled the construction of peptide-based viral capsids. Previously, we demonstrated that 24-mer β-annulus peptides from tomato bushy stunt virus spontaneously self-assemble into an artificial viral capsid. Here we propose to use the artificial viral capsid through the self-assembly of β-annulus peptide as a simple model to analyze the effect of molecular crowding environment on the formation process of viral capsid. Artificial viral capsids formed by co-assembly of fluorescent-labelled and unmodified β-annulus peptides in dilute aqueous solutions and under molecular crowding conditions were analyzed using fluorescence correlation spectroscopy (FCS). The apparent particle size and the dissociation constant (Kd) of the assemblies decreased with increasing concentration of the molecular crowding agent, i.e., polyethylene glycol (PEG). This is the first successful in situ analysis of self-assembling process of artificial viral capsid under molecular crowding conditions.  相似文献   
34.
Although curcumin is considered to have various therapeutic effects, its use as a functional food or supplement is restricted owing to its low water solubility and bioavailability. To increase the solubility of curcumin in water, the use of polyvinylpyrrolidone (PVP) and vinylpyrrolidone-vinyl acetate copolymers with a pyrrolidone skeleton was noted to be promising. In particular, the bi-component formulations of curcumin/PVP prepared through spray drying exhibited an amorphous state in powder X-ray diffraction observations and temporally increased the apparent solubility of curcumin to over 5000 times that of untreated curcumin; nevertheless, after 24 h, the solubility decreased owing to the unstable supersaturated state of curcumin. The addition of α-cyclodextrin (α-CyD) in the bi-component curcumin/PVP formulation helped maintain the supersaturated state of curcumin, whereas the addition of β- and γ-CyD led to the collapse of the supersaturated state. The addition of α-CyD can likely help inhibit the nucleation and crystal growth of curcumin, through the interaction among the solubilized units of curcumin/PVP and α-CyD.  相似文献   
35.
Development of drug-delivery systems that selectively target neoplastic cells has been a major goal of nanomedicine. One major strategy for achieving this milestone is to install ligands on the surface of nanocarriers to enhance delivery to target tissues, as well as to enhance internalization of nanocarriers by target cells, which improves accuracy, efficacy, and ultimately enhances patient outcomes. Herein, recent advances regarding the development of ligand-installed nanocarriers are introduced and the effect of their design on biological performance is discussed. Besides academic achievements, progress on ligand-installed nanocarriers in clinical trials is presented, along with the challenges faced by these formulations. Lastly, the future perspectives of ligand-installed nanocarriers are discussed, with particular emphasis on their potential for emerging precision therapies.  相似文献   
36.
37.
It is well known that weld residual stress and distortion should be controlled appropriately for structural integrity. Recently, it has become much more necessary to control weld distortion to highly improve manufacturing efficiency. Various studies on control of weld distortion had been conducted based on clarification of influential dominant factors for that. The influential dominant factors had been studied from a viewpoint of temperature distribution in plate thickness section. Without considering moving the weld heat source, the temperature distribution is controlled by weld heat input (Qnet) per weld length. Angular distortion, which is controlled by temperature distribution along the direction of plate thickness (h), is controlled by heat input parameter (Qnet/h2). However, it has recently become known that the conventional results cannot be applied to all welding processes because such processes are becoming more diversified. It is significant for more accurate control of angular distortion to investigate once again the relationship between the heat input parameter and angular distortion. In this study, a series of experiments on the relationship between heat input parameter and angular distortion are carried out. The effects of welding current and welding speed are investigated individually in both TIG and MAG welding. The difference between these welding methods is also investigated. Based on the result, the effects of them are discussed in relation to temperature distribution during welding. It is considered that angular distortion is affected by temperature distribution not only in plate thickness section but also along welding direction. So, angular distortion is not always controlled by only the conventional heat input parameter because the heat input parameter is proposed as the influential dominant factor for temperature distribution in plate thickness section. It is concluded that generation characteristics of inherent strain should be considered in relation to three-dimensional temperature distributions during welding for more accurate control of angular distortion.  相似文献   
38.
Poly(lactic acid) (PLA) is a biobased polymer made from biomass having high mechanical properties for engineering materials applications. However, PLA has certain limited properties such as its brittleness and low heat distortion temperature. Thus, the aim of this study is to improve toughness of PLA by blending with poly(butylene succinate‐co‐adipate) (PBSA), the biodegradable polymer having high toughness. Polymer blends of PLA and PBSA were prepared using a twin screw extruder. The melt rheology and the thermal property of the blends were examined. Further the blends were fabricated into compression molded parts and melt‐spun fiber and were subjected to tensile and impact tests. When the PBSA content was low, PBSA phase was finely dispersed in the PLA matrix. On the other hand, when the PBSA content was high, this minor phase dispersed as a large droplet. Mechanical properties of the compression molded parts were affected by the dispersion state of PBSA minor component in PLA matrix. Impact strength of the compression molded parts was also improved by the addition of soft PBSA. The improvement was pronounced when the PBSA phase was finely dispersed in PLA matrix. However, the mechanical property of the blend fibers was affected by the postdrawing condition as well as the PBSA content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41856.  相似文献   
39.
40.
A new polymeric adsorbent material based on polyethylene (PE) was prepared by photografting of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) as a positively chargeable monomer to a PE film. The effects of the experimental parameters, such as the pH value, temperature, and grafted amount on adsorption of chromium(VI) (Cr(VI)) ions were investigated for the DMAEMA‐grafted PE (PE‐g‐PDAMEMA) films. The maximum adsorption capacity was obtained at the initial pH value of 3.0 for a PE‐g‐PDMAEMA film with 1.8 mmol/g and the maximum adsorption capacity obtained was higher than or compatible to those of many of the other polymeric adsorbents prepared for Cr(VI) ions. The adsorption kinetics obeyed the mechanism of the pseudo‐second order kinetic model and adsorption of Cr(VI) ions on PE‐g‐PDMAEMA films was well expressed by the Langmuir isotherm model. A high Langmuir adsorption constant suggests that the adsorption of Cr(VI) ions occurs between protonated dimethylamino groups and ions mainly through the electrostatic interaction. Cr(VI) ions adsorbed were successfully desorbed from a PE‐g‐PDMAEMA film in solutions of NaCl, NH4Cl, NH4Cl containing NaOH, and NaOH and a PE‐g‐PDMAEMA film was regenerated and repeatedly used for adsorption of Cr(VI) ions without appreciable loss in the adsorption capacity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43360.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号