全文获取类型
收费全文 | 23469篇 |
免费 | 2045篇 |
国内免费 | 1016篇 |
专业分类
电工技术 | 1392篇 |
技术理论 | 2篇 |
综合类 | 1491篇 |
化学工业 | 3937篇 |
金属工艺 | 1305篇 |
机械仪表 | 1514篇 |
建筑科学 | 2091篇 |
矿业工程 | 826篇 |
能源动力 | 658篇 |
轻工业 | 1352篇 |
水利工程 | 396篇 |
石油天然气 | 1619篇 |
武器工业 | 152篇 |
无线电 | 2453篇 |
一般工业技术 | 2833篇 |
冶金工业 | 1144篇 |
原子能技术 | 250篇 |
自动化技术 | 3115篇 |
出版年
2024年 | 132篇 |
2023年 | 507篇 |
2022年 | 775篇 |
2021年 | 1049篇 |
2020年 | 848篇 |
2019年 | 693篇 |
2018年 | 764篇 |
2017年 | 855篇 |
2016年 | 704篇 |
2015年 | 927篇 |
2014年 | 1240篇 |
2013年 | 1350篇 |
2012年 | 1521篇 |
2011年 | 1597篇 |
2010年 | 1418篇 |
2009年 | 1265篇 |
2008年 | 1251篇 |
2007年 | 1190篇 |
2006年 | 1270篇 |
2005年 | 1172篇 |
2004年 | 695篇 |
2003年 | 608篇 |
2002年 | 539篇 |
2001年 | 486篇 |
2000年 | 468篇 |
1999年 | 613篇 |
1998年 | 480篇 |
1997年 | 415篇 |
1996年 | 378篇 |
1995年 | 323篇 |
1994年 | 254篇 |
1993年 | 146篇 |
1992年 | 134篇 |
1991年 | 120篇 |
1990年 | 91篇 |
1989年 | 79篇 |
1988年 | 58篇 |
1987年 | 31篇 |
1986年 | 31篇 |
1985年 | 11篇 |
1984年 | 11篇 |
1983年 | 7篇 |
1982年 | 11篇 |
1981年 | 4篇 |
1980年 | 2篇 |
1979年 | 4篇 |
1978年 | 2篇 |
1951年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
摘 要:目的 探究低温等离子体(cold plasma, CP)处理模式对冷藏南美白对虾中常见荧光假单胞菌(Pseudomonas fluorescens)的抑菌效果及其作用机制。方法 通过CP直接处理和循环处理P. fluorescens,研究了两种处理模式下臭氧含量动态变化对P. fluorescens的生长曲线、细胞活力,生物膜形成、细胞壁、细胞膜完整性和南美白对虾菌落总数及假单胞菌数等指标的影响。结果 两种处理模式在CP处理3 min或3 cycles后,包装内臭氧含量达到最高值,分别为(850±10) mg/m3和(874±20) mg/m3。CP循环处理模式使得臭氧含量随处理循环数递增,因此获得更长的臭氧存在时间从而具有更大的抑菌能力。P. fluorescens生长曲线表明CP处理使得菌体延迟期变长且对数生长期推迟。此外,CP处理后的P. fluorescens细胞活力显著下降(P<0.05),CP-1 min,CP-3 min和CP-3 cycles组的细胞活力分别为33.03%、5.90%和4.82%。同时相比CP-3 min组,CP-3 cycles组的P. fluorescens生物膜OD值下降27.61%。碱性磷酸酶(alkaline phosphatase, AKP)活性和核酸蛋白泄漏量结果表明,细胞壁和细胞膜完整性受损可能是P. fluorescens失活的直接原因。对虾保鲜测试结果证实,贮藏第6 d,CP-3 cycles组虾体中的菌落总数和假单胞菌数相比CP-3 min组分别降低了58.02%和79.54%。结论 CP循环处理模式通过延长对臭氧与对虾的暴露时间,提高了对P. fluorescens的灭活效果,同时还具有更优越的保鲜能力。本研究为开发基于CP技术的新型保鲜技术应用提供了理论参考。
关键词:低温等离子体;荧光假单胞菌;抑菌机制;保鲜 相似文献
23.
Yuan Deng Yihai Yang Yuanhang Xiao He-Lou Xie Ruochen Lan Lanying Zhang Huai Yang 《Advanced functional materials》2023,33(35):2301319
Switchable passive radiative cooling (PRC) smart windows can modulate sunlight transmission and spontaneously emit heat to outer space through atmospheric transparent window, presenting great potential in building energy conservation. However, realizing stable and on-demand control of the cooling efficiency for PRC materials is still challenging. Herein, an electro-controlled polymer-dispersed liquid crystal (PDLC) smart window showing PRC property is designed and prepared by adding mid-infrared emitting reactive monomers into the conventional PDLC matrix. It is found that not only the electro-optical properties but also the PRC efficiency of PRC PDLC film are tunable by regulating the content of the mid-infrared emitting components, film thickness, and micromorphology. This advanced PRC PDLC material achieves a near/sub-ambient temperature when the solar irradiance is below 400 W m−2 and can dynamically manage daytime cooling efficiency. Importantly, its PRC efficiency is capable of being tuned in an on-demand and ultrafast millisecond-scale way, whose controllable transparency enables multistage heat regulation. This study is hoped to provide new inspiration in the preparation of advanced optical devices and energy-efficient equipment. 相似文献
24.
Computational Economics - The present work aims to optimize the time index of financial engineering to improve the efficiency of financial decision-making. A Back Propagation Neural Network (BPNN)... 相似文献
25.
Microfluidics: Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated,High‐Throughput,and Near Real‐Time Cell Mechanotyping (Small 28/2017) 下载免费PDF全文
26.
Tensile properties and failure mechanism of a newly developed three-dimensional (3D) woven composite material named 3D nonorthogonal woven composite are investigated in this paper. The microstructure of the composite is studied and the tensile properties are obtained by quasi-static tensile tests. The failure mechanism of specimen is discussed based on observation of the fracture surfaces via electron microscope. It is found that the specimens always split along the oblique yarns and produce typical v-shaped fracture surfaces. The representative volume cell (RVC) is established based on the microstructure. A finite element analysis is conducted with periodical boundary conditions. The finite element simulation results agree well with the experimental data. By analyzing deformation and stress distribution under different loading conditions, it is demonstrated that finite element model based on RVC is valid in predicting tensile properties of 3D nonorthogonal woven composites. Stress distribution shows that the oblique yarns and warp yarns oriented along the x direction carry primary load under x tension and that warp yarns bear primary load under y tension. 相似文献
27.
Biwei Deng Rong Xu Kejie Zhao Yongfeng Lu Sabyasachi Ganguli Gary J. Cheng 《Materials Today》2018,21(5):467-474
Manufacturing ultralight and mechanical reliable materials has been a long-time challenge. Ceramic-based mechanical metamaterials provide significant opportunities to reverse their brittle nature and unstable mechanical properties and have great potential as strong, ultralight, and ultrastiff materials. However, the failure of ceramics nanolattice and degradation of strength/modulus with decreasing density are caused by buckling of the struts and failure of the nodes within the nanolattices, especially during cyclic loading. Here, we explore a new class of 3D ceramic-based metamaterials with a high strength–density ratio, stiffness, recoverability, cyclability, and optimal scaling factor. Deformation mode of the fabricated nanolattices has been engineered through the unique material design and architecture tailoring. Bending-dominated hollow nanolattice (B-H-Lattice) structure is employed to take advantages of its flexibility, while a few nanometers of carbonized mussel-inspired bio-polymer (C-PDA) is coherently deposited on ceramics’ nanolayer to enable non-buckling struts and bendable nodes during deformation, resulting in reliable mechanical properties and outperforming the current bending-dominated lattices (B-Lattices) and carbon-based cellulose materials. Meanwhile, the structure has comparable stiffness to stretching-dominated lattices (S-Lattices) while with better cyclability and reliability. The B-H-Lattices exhibit high specific stiffness (>106?Pa·kg?1·m?3), low-density (~30?kg/m3), buckling-free recovery at 55% strain, and stable cyclic loading behavior under up to 15% strain. As one of the B-Lattices, the modulus scaling factor reaches 1.27, which is lowest among current B-Lattices. This study suggests that non-buckling behavior and reliable nodes are the key factors that contribute to the outstanding mechanical performance of nanolattice materials. A new concept of engineering the internal deformation behavior of mechanical metamaterial is provided to optimize their mechanical properties in real service conditions. 相似文献
28.
Biodegradable Batteries: A Fully Biodegradable Battery for Self‐Powered Transient Implants (Small 28/2018) 下载免费PDF全文
29.
Xingquan Zhang Yan Zhang Yiwei Zhang Shanbao Pei Zhilai Huang Lei Deng Shengzhi Li 《International Journal of Material Forming》2018,11(1):101-112
Laser shock forming (LSF) technology employs shock waves to form sheet metal into three-dimensional complex parts, and has application potential in manufacturing sheet metal parts. In this paper, the forming of 2024 aluminum alloy sheet with LSF was investigated through numerical and experimental methods. The numerical model was established with the commercial code ABAQUS/Explicit. The formed conical cup was obtained from the simulation, and validated by the experiment. With the verified numerical model, the deformation behaviors, including deformation velocity, sheet thickness variation and strain distribution, were studied. In addition, the influence of different shock wave pressures on the forming precision was also investigated. The experimental and numerical results show that the metal sheet loaded by shock wave can take the shape of the mold, and the non-uniform thickness is distributed in the formed cup. The investigations also display that there exists reverse deformation at the central region of deforming sheet owing to severe collision during LSF. In order to obtain formed part with better quality, an appropriate pressure of applied shock waves is required. 相似文献
30.
Zihe Li Xiangming Feng Liwei Mi Jinyun Zheng Xiaoyang Chen Weihua Chen 《Nano Research》2018,11(8):4038-4048
Spinel LiMn2O4 is a widely utilized cathode material for Li-ion batteries. However, its applications are limited by its poor energy density and power density. Herein, a novel hierarchical porous onion-like LiMn2O4(LMO) was prepared to shorten the Li+ diffusion pathway with the presence of uniform pores and nanosized primary particles. The growth mechanism of the porous onion-like LiMn2O4 was analyzed to control the morphology and the crystal structure so that it forms a polyhedral crystal structure with reduced Mn dissolution. In addition, graphene was added to the cathode (LiMn2O4/graphene) to enhance the electronic conductivity. The synthesized LiMn2O4/graphene exhibited an ultrahigh-rate performance of 110.4 mAh·g–1 at 50 C and an outstanding energy density at a high power density, maintaining 379.4 Wh·kg–1 at 25,293 W·kg–1. Besides, it shows durable stability, with only 0.02% decrease in the capacity per cycle at 10 C. Furthermore, the (LiMn2O4/graphene)/graphite full-cell exhibited a high discharge capacity. This work provides a promising method for the preparation of outstanding, integrated cathodes for potential applications in lithium ion batteries. 相似文献