首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   14篇
  国内免费   1篇
电工技术   12篇
综合类   1篇
化学工业   225篇
金属工艺   16篇
机械仪表   6篇
建筑科学   18篇
能源动力   3篇
轻工业   56篇
水利工程   2篇
无线电   46篇
一般工业技术   113篇
冶金工业   19篇
原子能技术   4篇
自动化技术   60篇
  2023年   7篇
  2022年   6篇
  2021年   9篇
  2020年   10篇
  2019年   9篇
  2018年   7篇
  2017年   4篇
  2016年   12篇
  2015年   13篇
  2014年   17篇
  2013年   25篇
  2012年   28篇
  2011年   32篇
  2010年   25篇
  2009年   31篇
  2008年   24篇
  2007年   22篇
  2006年   21篇
  2005年   23篇
  2004年   15篇
  2003年   13篇
  2002年   10篇
  2001年   10篇
  2000年   12篇
  1999年   16篇
  1998年   16篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   8篇
  1993年   8篇
  1992年   11篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1987年   6篇
  1986年   7篇
  1985年   5篇
  1984年   12篇
  1983年   8篇
  1982年   9篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   7篇
  1975年   4篇
  1974年   6篇
  1973年   4篇
  1972年   3篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
51.
The development of new glassy materials is key for addressing major global challenges in energy, medicine, and advanced communications systems. For example, thin, flexible, and large-area glass substrates will play an enabling role in the development of flexible displays, roll-to-roll processing of solar cells, next-generation touch-screen devices, and encapsulation of organic semiconductors. The main drawback of glass and its limitation for these applications is its brittle fracture behavior, especially in the presence of surface flaws, which can significantly reduce the practical strength of a glass product. Hence, the design of new ultrastrong glassy materials and strengthening techniques is of crucial importance. The main issues regarding glass strength are discussed, with an emphasis on the underlying microscopic mechanisms that are responsible for mechanical properties. The relationship among elastic properties and fracture behavior is also addressed, focusing on both oxide and metallic glasses. From a theoretical perspective, atomistic modeling of mechanical properties of glassy materials is considered. The topological origin of these properties is also discussed, including its relation to structural and chemical heterogeneities. Finally, comments are given on several toughening strategies for increasing the damage resistance of glass products.  相似文献   
52.
Films over films: innovative coatings for complex applications Thin films and coatings have developed as a prerequisite for many technical applications. In this paper, some applications for electrical, electronic, biomedical and optical applications are presented. In this contribution, examples for coatings for conductive and transparent films in photovoltaics, films for biomedical electrodes, for semiconductor contacts and for high‐temperature contacts are presented and discussed. The films are prepared by magnetron‐sputtering and pulsed laser deposition. The influence of the processing parameters on the functional properties of the films is presented.  相似文献   
53.
54.
The enzymatic degradation of thermal treated α-glucans with amylolytic enzymes depends on the reaction environment (T, pH, moisture), the degree of polymerisation (DP) and the branch of the substrates as well as on the presence of amino compounds. The chemical changes of the α-glucans due to thermolysis at 180 °C are characterized by means of the amount of reducing substances and the amount of maltooligosaccharides (HPLC). In general the enzymatic degradability of the thermal treated α-glucans is decreased with increasing time of thermolysis, temperature and moisture content. The enzyme activity with the thermal treated α-glucans is diminished in the same way. The addition of amino compounds reduces the enzymatic degradability only at the beginning of the reaction. With increasing time of thermolysis the thermolysates without glycine addition are hardly degradated. As reason for these differences in the enzymatic degradation transglycosylation and non-enzymatic browning reactions (caramalisation/ Maillard-reaction) are assumed.  相似文献   
55.
56.
57.
This investigation examined the role of microstructure and surface finish on the high cycle fatigue (HCF) performance of TIMETAL LCB (Ti-6.8Mo-4.5Fe-1.5Al). The as-received microstructure of LCB consisted of elongated β grains with a semicontinuous grain boundary α layer. In contrast, a fine equiaxed β + spheroidized α LCB microstructure was achieved by hot swaging and solution (recrystallization) anneal. The latter modification of the prior β grain structure, together with the size, morphology, and distribution of the primary α phase, resulted in a significant enhancement in the tensile and HCF properties. Furthermore, prestraining (PS), as would be expected during the fabrication of an automotive coil spring, and prior to aging for 30 min at temperatures between 500 and 550 °C, led to additional increases in tensile strength. In contrast, the HCF performance was always reduced when PS prior to aging was included in the overall processing procedure. Finally, shot-peening and roller-burnishing both resulted in an increased fatigue life in the finite life regimen; however, significant reductions in the 107 cycle fatigue strengths were observed when these procedures were used. These observations have been explained by including the effect of process-induced residual tensile stresses in the fatigue analysis, resulting in subsurface fatigue crack nucleation. This paper was presented at the Beta Titanium Alloys of the 00’s Symposium sponsored by the Titanium Committee of TMS, held during the 2005 TMS Annual Meeting & Exhibition, February 13–16, 2005 in San Francisco, CA.  相似文献   
58.
59.
60.
Zusammenfassung Ein grosser Teil des aktuellen Kulturgutes entsteht in Form digitaler Dokumente. Die langfristige, verf?lschungsfreie Erhaltung und Wiedergabe digitaler Dokumente ist ein noch nicht befriedigend gel?stes Informatik-Problem. Wir beschreiben den Kontext und Aspekte dieser Aufgabe mit den sich daraus ergebenden Anforderungen und skizzieren einige aktuell diskutierte L?sungsans?tze.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号