首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5607篇
  免费   369篇
  国内免费   11篇
电工技术   109篇
综合类   9篇
化学工业   1604篇
金属工艺   79篇
机械仪表   167篇
建筑科学   215篇
矿业工程   5篇
能源动力   188篇
轻工业   553篇
水利工程   41篇
石油天然气   23篇
无线电   447篇
一般工业技术   927篇
冶金工业   267篇
原子能技术   30篇
自动化技术   1323篇
  2024年   6篇
  2023年   85篇
  2022年   248篇
  2021年   322篇
  2020年   174篇
  2019年   202篇
  2018年   207篇
  2017年   207篇
  2016年   251篇
  2015年   212篇
  2014年   270篇
  2013年   447篇
  2012年   393篇
  2011年   449篇
  2010年   333篇
  2009年   330篇
  2008年   292篇
  2007年   256篇
  2006年   215篇
  2005年   152篇
  2004年   126篇
  2003年   95篇
  2002年   87篇
  2001年   63篇
  2000年   57篇
  1999年   57篇
  1998年   80篇
  1997年   64篇
  1996年   53篇
  1995年   26篇
  1994年   36篇
  1993年   31篇
  1992年   12篇
  1991年   11篇
  1990年   13篇
  1989年   10篇
  1988年   6篇
  1987年   11篇
  1985年   12篇
  1984年   8篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1977年   10篇
  1974年   2篇
  1973年   3篇
  1971年   3篇
排序方式: 共有5987条查询结果,搜索用时 15 毫秒
991.
Hydrotreating in the presence of dispersed catalysts has been considered a promising route to obtain valuable fuels from heavy hydrocarbon cuts. A laboratory-scale study on the effect of operating conditions on heavy feedstock hydrotreating performances is reported. In order to maximise the effectiveness of the research activity, chemometrics was exploited both for experimental design and data interpretation.  相似文献   
992.
Acetylene hydrochlorination using a carbon-supported gold catalyst is studied. Reactivation of the catalyst is demonstrated using a brief treatment of the spent catalyst with boiling aqua regia and the process of reactivation and deactivation is characterised using X-ray photoelectron spectroscopy. Deactivation is considered to be due to loss of Au3+ which is restored by the aqua regia treatment.  相似文献   
993.
Semicrystalline linear low density polyethylenes (LLDPEs) with exclusively ethyl branching (from 7 to 56 branches per 1,000 carbon atoms) were prepared from ethylene by homogeneous tandem catalytic systems comprising (imino)pyridine cobalt(II) dichlorides as oligomerization precursors, bis(cyclopentadienyl)zirconium(IV) dichloride as copolymerization precursor and methyaluminoxane as activator. The activity of the tandem systems was evaluated by varying either the molar fraction of the cobalt precursors or the ethylene pressure. The latter parameter was of crucial importance to control both the productivity and the extent of 1-butene incorporation. In particular, increasing the ethylene pressure from 2 bar to 4 bar changed the “comonomer effect” from positive to negative.  相似文献   
994.
The molecular mechanism of entry of herpes viruses requires a multicomponent fusion system. Virus entry and cell-cell fusion of Herpes simplex virus (HSV) requires four glycoproteins: gD, gB and gH/gL. The role of gB remained elusive until recently, when the crystal structure of HSV-1 gB became available. Glycoprotein B homologues represent the most highly conserved group of herpes virus glycoproteins; however, despite the high degree of sequence and structural conservation, differences in post-translational processing are observed for different members of this virus family. Whereas gB of HSV is not proteolytically processed after oligomerization, most other gB homologues are cleaved by a cellular protease into subunits that remain linked through disulfide bonds. Proteolytic cleavage is common for activation of many other viral fusion proteins, so it remains difficult to envisage a common role for different herpes virus gB structures in the fusion mechanism. We selected bovine herpes virus type 1 (BoHV-1) and herpes simplex virus type 1 (HSV-1) as representative viruses expressing cleaved and uncleaved gBs, and have screened their amino acid sequences for regions of highly interfacial hydrophobicity. Synthetic peptides corresponding to such regions were tested for their ability to induce the fusion of large unilamellar vesicles and to inhibit herpes virus infection. These results underline that several regions of the gB protein are involved in the mechanism of membrane interaction.  相似文献   
995.
This study aimed to develop a novel approach for the production of analytically robust and miniaturized polymeric ion sensors that are vitally important in modern analytical chemistry (e.g., clinical chemistry using single blood droplets, modern biosensors measuring clouds of ions released from nanoparticle-tagged biomolecules, laboratory-on-a-chip applications, etc.). This research has shown that the use of a water-repellent poly(methyl methacrylate)/poly(decyl methacrylate) (PMMA/PDMA) copolymer as the ion-sensing membrane, along with a hydrophobic poly(3-octylthiophene 2,5-diyl) (POT) solid contact as the ion-to-electron transducer, is an excellent strategy for avoiding the detrimental water layer formed at the buried interface of solid-contact ion-selective electrodes (ISEs). Accordingly, it has been necessary to implement a rigorous surface analysis scheme employing electrochemical impedance spectroscopy (EIS), in situ neutron reflectometry/EIS (NR/EIS), secondary ion mass spectrometry (SIMS), and small-angle neutron scattering (SANS) to probe structurally the solid-contact/membrane interface, so as to identify the conditions that eliminate the undesirable water layer in all solid-state polymeric ion sensors. In this work, we provide the first experimental evidence that the PMMA/PDMA copolymer system is susceptible to water "pooling" at the interface in areas surrounding physical imperfections in the solid contact, with the exposure time for such an event in a PMMA/PDMA copolymer ISE taking nearly 20 times longer than that for a plasticized poly(vinyl chloride) (PVC) ISE, and the simultaneous use of a hydrophobic POT solid contact with a PMMA/PDMA membrane can eliminate totally this water layer problem.  相似文献   
996.
An integrated platinum nanoparticles (NPs)/glucose oxidase (GOx) composite film associated with a Au electrode is used to follow the biocatalytic activities of the enzyme. The film is assembled on a Au electrode by the electropolymerization of thioaniline-functionalized Pt NPs and thioaniline-modified GOx. The resulting enzyme/Pt NPs-functionalized electrode stimulates the O 2 oxidation of glucose to gluconic acid and H 2O 2. The modified electrode is then implemented to follow the activity of the enzyme by the electrochemical monitoring of the generated H 2O 2. The effect of the composition of the Pt NPs/GOx cross-linked nanostructures and the optimal conditions for the preparation of the electrodes are discussed.  相似文献   
997.
998.
The design of compounds selective for the MT1 melatonin receptor is still a challenging task owing to the limited knowledge of the structural features conferring selectivity for the MT1 subtype, and only few selective compounds have been reported so far. N‐(Anilinoalkyl)amides are a versatile class of melatonin receptor ligands that include nonselective MT1/MT2 agonists and MT2‐selective antagonists. We synthesized a new series of N‐(anilinoalkyl)amides bearing 3‐arylalkyloxy or 3‐alkyloxy substituents at the aniline ring, looking for new potent and MT1‐selective ligands. To evaluate the effect of substituent size and shape on binding affinity and intrinsic activity, both flexible and conformationally constrained derivatives were prepared. The phenylbutyloxy substituent gave the best result, providing the partial agonist 4 a , which was endowed with high MT1 binding affinity (pKi=8.93) and 78‐fold selectivity for the MT1 receptor. To investigate the molecular basis for agonist recognition, and to explain the role of the 3‐arylalkyloxy substituent, we built a homology model of the MT1 receptor based on the β2 adrenergic receptor crystal structure in its activated state. A binding mode for MT1 agonists is proposed, as well as a hypothesis regarding the receptor structural features responsible for MT1 selectivity of compounds with lipophilic arylalkyloxy substituents.  相似文献   
999.
Previous studies aimed at exploring the SAR of C2-functionalized S-DABOs demonstrated that the substituent at this position plays a key role in the inhibition of both wild-type RT and drug-resistant enzymes, particularly the K103N mutant form. The introduction of a cyclopropyl group led us to the discovery of a potent inhibitor with picomolar activity against wild-type RT and nanomolar activity against many key mutant forms such as K103N. Despite its excellent antiviral profile, this compound suffers from a suboptimal ADME profile typical of many S-DABO analogues, but it could, however, represent a promising candidate as an anti-HIV microbicide. In the present work, a new series of S-DABO/N-DABO derivatives were synthesized to obtain additional SAR information on the C2-position and in particular to improve ADME properties while maintaining a good activity profile against HIV-1 RT. In vitro ADME properties (PAMPA permeation, water solubility, and metabolic stability) were also experimentally evaluated for the most interesting compounds to obtain a reliable indication of their plasma levels after oral administration.  相似文献   
1000.
ABSTRACT: Scanning tunneling spectroscopy (STS) was used to measure local differential conductance (dI/dV) spectra on nanometer-size graphene islands on an Ir(111) surface. Energy resolved dI/dV maps clearly show a spatial modulation, which we ascribe to a modulated local density of states due to quantum confinement. STS near graphene edges indicates a position dependence of the dI/dV signals, which suggests a reduced density of states near the edges of graphene islands on Ir(111).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号