首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   22篇
电工技术   5篇
化学工业   128篇
金属工艺   14篇
机械仪表   8篇
建筑科学   9篇
能源动力   20篇
轻工业   57篇
无线电   27篇
一般工业技术   53篇
冶金工业   13篇
原子能技术   2篇
自动化技术   33篇
  2023年   3篇
  2022年   32篇
  2021年   43篇
  2020年   15篇
  2019年   16篇
  2018年   9篇
  2017年   19篇
  2016年   19篇
  2015年   13篇
  2014年   15篇
  2013年   20篇
  2012年   18篇
  2011年   24篇
  2010年   10篇
  2009年   19篇
  2008年   16篇
  2007年   11篇
  2006年   10篇
  2005年   10篇
  2004年   12篇
  2003年   9篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1998年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1978年   1篇
排序方式: 共有369条查询结果,搜索用时 0 毫秒
61.
The influence of the use of moulding sand with furan resin, prepared both with fresh sand and reclaimed matrix, on the formation of a flake graphite formation at the surface layer of ductile iron castings has been investigated. A series of experimental heats of ductile iron cast in moulds made of moulding sand characterised by different levels of surface active elements (sulphur, oxygen) were performed. The effect of the wall thickness and the initial temperature of the metal in the mould cavity on the formation of flake graphite in the surface layer of the casting is shown in the paper. Investigations carried out by means of scanning electron microscopy (energy dispersive X-ray spectroscopy and wavelength dispersive X-ray spectroscopy) showed concentration of gradient profiles of surface active elements in the castings surface layer, which are responsible for their quality. Finally, it has been shown that there exists a significant effect of the quality of the sand on the formation of the flake graphite layer and the surface characteristics of ductile iron castings.  相似文献   
62.
The thermal processes proceeding in the casting-mould system are analysed. Solidification process can be described in the different ways. One of them consists in the application of the Fourier–Kirchhoff equation in which the source function controlling the phase change is introduced. In this paper, two approaches to the modelling of pure metals solidification, i.e. the solidification proceeding at the constant temperature and in the artificially introduced interval of temperature are considered. Numerical model used at the stage of computations is constructed using the Control Volume Method in which the principle of conservation of energy (taking also into account the release of latent heat of solidification) is applied to each control volume ensuring the correctness of the model. The use of Voronoi/Thiessen tessellation to the discretization of the casting-mould system can accurately reproduce the shape of each sub-domain. In the final part of the paper, the examples of computations are shown.  相似文献   
63.
This paper presents the optimization procedure of a hybrid removal-forming type process based on the minimum energy consumption and demanded surface roughness which is supported by the analysis of transformation of the surface and sublayer properties termed as the technological heredity. The experimental investigation covers an alloy steel hardened to 35 HRC and 55 HRC which was initially turned using coated carbide and CBN tools and subsequently burnished to produce surfaces with Ra roughness parameter of about 0.15 μm. The modifications of the initial surface profiles, microstructure and microhardness of the sublayer were determined and relevant technological limits are selected.  相似文献   
64.
Melatonin is registered to treat circadian rhythm sleep–wake disorders and insomnia in patients aged 55 years and over. The essential role of the circadian sleep rhythm in the deterioration of sleep quality during COVID-19 confinement and the lack of an adverse effect of melatonin on respiratory drive indicate that melatonin has the potential to be a recommended treatment for sleep disturbances related to COVID-19. This review article describes the effects of melatonin additional to its sleep-related effects, which make this drug an attractive therapeutic option for treating patients with COVID-19. The preclinical data suggest that melatonin may inhibit COVID-19 progression. It may lower the risk of the entrance of the SARS-CoV-2 virus into cells, reduce uncontrolled hyper-inflammation and the activation of immune cells, limit the damage of tissues and multiorgan failure due to the action of free radicals, and reduce ventilator-induced lung injury and the risk of disability resulting from fibrotic changes within the lungs. Melatonin may also increase the efficacy of COVID-19 vaccination. The high safety profile of melatonin and its potential anti-SARS-CoV-2 effects make this molecule a preferable drug for treating sleep disturbances in COVID-19 patients. However, randomized clinical trials are needed to verify the clinical usefulness of melatonin in the treatment of COVID-19.  相似文献   
65.
Polylactide-b-polyglycidol-b-poly(ethylene oxide) terpolymers and their derivatives with carboxyl and 4-(phenylazo)phenyl labels in polyglycidol blocks were used for formation of nanoparticles. Nanoparticles were produced by self assembly of terpolymer macromolecules in water above the critical aggregation concentration and by dialysis of terpolymer solutions in 1,4-dioxane against water. For terpolymers with 4-(phenylazo)phenyl labels critical aggregation concentrations increased after irradiation with UV light (300 < lambda < 400 nm) inducing conformational change of the label from trans- to cis-conformation. Diameters of nanoparticles obtained by self-assembly of macromolecules ranged from 20 to 44 nm. Dialysis yielded nanoparticles with bimodal diameter distribution. One fraction had diameters below 35 nm and diameters of the second fraction were in a range from 350 to 2300 nm, depending on terpolymer structure. Mixtures of terpolymers with poly(L,L-lactide) and poly(D,D-lactide) blocks yielded nanoparticles with diameters from 350 to 440 nm. Pyrene was incorporated into nanoparticles by partition between solution and nanoparticles or directly during particle formation by dialysis. Monitoring of pyrene release from nanoparticles suggests that a fraction of this compound was entrapped into the polylactide core whereas the remaining one was located in the polyether rich shell. The release from shells is faster for nanoparticles made from copolymers with carboxyl labels in polyglycidol blocks.  相似文献   
66.
The molecular mechanism underlying embryonic implantation is vital to understand the correct communications between endometrium and developing conceptus during early stages of pregnancy. This study’s objective was to determine molecular changes in the uterine endometrial proteome during the preimplantation and peri-implantation between 9 days (9D), 12 days (12D), and 16 days (16D) of pregnant Polish Large White (PLW) gilts. 2DE-MALDI-TOF/TOF and ClueGOTM approaches were employed to analyse the biological networks and molecular changes in porcine endometrial proteome during maternal recognition of pregnancy. A total of sixteen differentially expressed proteins (DEPs) were identified using 2-DE gels and MALDI-TOF/TOF mass spectrometry. Comparison between 9D and 12D of pregnancy identified APOA1, CAPZB, LDHB, CCT5, ANXA4, CFB, TTR upregulated DEPs, and ANXA5, SMS downregulated DEPs. Comparison between 9D and 16D of pregnancy identified HP, APOA1, ACTB, CCT5, ANXA4, CFB upregulated DEPs and ANXA5, SMS, LDHB, ACTR3, HP, ENO3, OAT downregulated DEPs. However, a comparison between 12D and 16D of pregnancy identified HP, ACTB upregulated DEPs, and CRYM, ANXA4, ANXA5, CAPZB, LDHB, ACTR3, CCT5, ENO3, OAT, TTR down-regulated DEPs. Outcomes of this study revealed key proteins and their interactions with metabolic pathways involved in the recognition and establishment of early pregnancy in PLW gilts.  相似文献   
67.
To characterize complex, three‐dimensional nanostructures, modern microscopy techniques are needed, such as electron tomography and focused ion beam (FIB) sectioning. The aim of this study was to apply these two techniques to characterize TiO2 nanotubes in terms of their size, shape, volume, porosity, geometric surface area, and specific surface area (SSA). For these experiments, titania nanotubes were fabricated by means of the electrochemical oxidation of titanium at a voltage of 20 V for 2 hr followed by heat treatment at 450°C for 3 hr to change the amorphous structure into a crystalline anatase structure. The quantitative data obtained from the FIB and electron tomography reconstructions show a high similarity in porosity and some differences in SSA. These might be the result of differences in resolution between the two reconstruction techniques.  相似文献   
68.
This paper proposes a computationally effective framework for load‐dependent optimal sensor placement in large‐scale civil engineering structures subjected to moving loads. Two common problems are addressed: selection of modes to be monitored and computational effectiveness. Typical sensor placement methods assume that the set of modes to be monitored is known. In practice, determination of such modes of interest is not straightforward. A practical approach is proposed that facilitates the selection of modes in a quasi‐automatic way based on the structural response at the candidate sensor locations to typical operational loads. The criterion used to assess sensor placement is based on Kammer's Effective Independence (EFI). However, in contrast to typical implementations of EFI, which treat the problem as a computationally demanding discrete problem and use greedy optimization, an approach based on convex relaxation is proposed. A notion of sensor density is applied, which converts the original combinatorial problem into a computationally tractable continuous optimization problem. The proposed framework is tested in application to a real tied‐arch railway bridge located in central Poland.  相似文献   
69.
A new kind of longitudinal flow spiral recuperator for the heat recovery in ventilation systems of buildings was studied experimentally and analytically.The aim of this work is to analyze the possibility of using air handling units with new type of spiral recuperator in order to recover heat in ventilation systems of buildings. For the reason that the air flows are parallel to the symmetry axis of the longitudinal flow spiral recuperator, in this unit pressure drops are smaller than in commonly known spiral exchangers. Because of the counter flow, a greater value of thermal effectiveness ? is reached for the same value of the number of transfer units in comparison to cross-flow recuperators.The exploitation of the new type of spiral recuperator in winter periods brings significant savings. The results obtained from computations are very encouraging for a widespread use of these devices.  相似文献   
70.
In this paper, results of hydrogen production via methane reforming in the atmospheric pressure microwave plasma are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to convert methane into hydrogen. Important advantages of the presented waveguide-based nozzleless cylinder-type MPS are: stable operation in various gases (including air) at high flow rates, no need for a cooling system, and impedance matching. The plasma generation was stabilized by an additional swirled nitrogen flow (50 or 100 l min−1). The methane flow rate was up to 175 l min−1. The absorbed microwave power could be changed from 3000 to 5000 W. The hydrogen production rate and the corresponding energy efficiency in the presented methane reforming by the waveguide-based nozzleless cylinder-type MPS were up to 255 g[H2] h−1 and 85 g[H2] kWh−1, respectively. These parameters are better than those typical of the conventional methods of hydrogen production (steam reforming of methane and water electrolysis).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号