首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   60篇
  国内免费   9篇
电工技术   21篇
综合类   1篇
化学工业   185篇
金属工艺   22篇
机械仪表   33篇
建筑科学   27篇
矿业工程   2篇
能源动力   62篇
轻工业   76篇
水利工程   5篇
石油天然气   14篇
无线电   60篇
一般工业技术   106篇
冶金工业   44篇
原子能技术   7篇
自动化技术   124篇
  2024年   2篇
  2023年   10篇
  2022年   21篇
  2021年   42篇
  2020年   34篇
  2019年   50篇
  2018年   77篇
  2017年   48篇
  2016年   51篇
  2015年   33篇
  2014年   35篇
  2013年   73篇
  2012年   55篇
  2011年   64篇
  2010年   28篇
  2009年   32篇
  2008年   19篇
  2007年   21篇
  2006年   18篇
  2005年   5篇
  2004年   8篇
  2003年   7篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   9篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1972年   1篇
排序方式: 共有789条查询结果,搜索用时 609 毫秒
781.

Silicon nitride (Si3N4) coating was deposited on AISI D2 tool steel through employing duplex surface treatments—pack siliconizing followed by plasma nitriding. Pack cementation was performed at 650 °C, 800 °C, and 950 °C for 2 and 3 hours by using various mixtures to realize the silicon coating. X-ray diffraction analyses and scanning electron microscopy observations were employed for demonstrating the optimal process conditions leading to high coating adhesion, uniform thickness, and composition. The optimized conditions belonging to siliconizing were employed to produce samples to be further processed via plasma nitriding. This treatment was performed with a gas mixture of 75 pct H2-25 pct N2, at the temperature of 550 °C for 7 hours. The results showed that different nitride phases such as Si3N4-β, Si3N4-γ, Fe4N, and Fe3N can be recognized as coatings reinforcements. It was demonstrated that the described composite coating procedure allowed to obtain a remarkable increase in hardness (80 pct higher with respect to the substrate) and wear resistance (30 pct decrease of weight loss) of the tool steel.

  相似文献   
782.
Polyvinyl alcohol (PVA) is a synthetic commercial polymer with the inherent hydrophilicity, thermal and chemical resistance, ecofriendly, and a high anti-fouling potential making it an attractive choice for water treatment applications, but has been less studied for oil and gas industry applications. On the other hands, nowadays nanotechnology has gained an important space within most core areas in upstream oil and gas operations. The present work, first PVA at various concentrations, was added to 5 wt% NaCl solution and then, crosslinked by formaldehyde 37% at two different concentration ratios. To compare, a nanocomposite hydrogel was fabricated in the same way with 1 wt% silica nanoparticles (NPs). Contact angle and filtration test were performed to confirm the ability of PVA hydrogel and nanocomposite hydrogel for oil and water adsorption. Following this, a rheology measurement was made to realize the gelation time of samples and their performance for water shutoff applications. Finally, an experimental flooding setup was designed to inject the fluids into carbonate plugs in order to estimate of oil and water effective permeability, and oil recovery factor (RF) before and after the PVA hydrogel and nanocomposite hydrogel injection. Both samples wettability tests showed a super-hydrophilic state for brine droplets and neutral state for synthetic oil droplets by using nanocomposite hydrogel. The flooding tests revealed that the PVA hydrogel was clogged the plug with blocking efficiency of 32.83% for water effective permeability and 14.60% for oil effective permeability. This value was calculated to be 50.37% for water effective permeability and 31.36% for oil effective permeability in the case of nanocomposite hydrogel injection. Oil RF was also reported to be 64.58% after injecting PVA hydrogel which was higher than nanocomposite hydrogel injection with RF of 52.08%.  相似文献   
783.
In this research, porous benzene-based hypercrosslinked polymeric adsorbents with different morphological properties were synthesized through Friedel–Crafts alkylation reaction. The resulting samples were applied for CO2 capture at different operational conditions. Two modelling approaches, including artificial neural network (radial basis function [RBF] and multi layer perceptron [MLP]) and response surface methodology (RSM), were employed to investigate the effect of independent parameters on adsorption capacity. A semi-empirical quadratic model for adsorption capacity was presented based on RSM-central composite design technique. Additionally, the optimal structure of RBF was determined with 200 neurons, and the optimal structure of MLP was determined with three hidden layers and 10, 8, and 7 neurons. The modelling results demonstrate the better prediction of MLP and RBF approaches than the RSM method with correlation coefficient values of 0.999, 0.989, and 0.931, respectively. Finally, process optimization was carried out using RSM optimization module and the optimized values of synthesis time, crosslinker ratio (formaldehyde dimethyl acetal [FDA]/benzene), adsorption time, pressure, and temperature were obtained at 10.11 h, 1, 220 s, 9 bar, and 55°C, respectively. The optimum value of CO2 uptake capacity was obtained around 167 (mg/g).  相似文献   
784.
Knowledge and Information Systems - Domain adaptation is a representative problem in transfer learning, which aims to tackle the problem of insufficient labeled data in a target domain by...  相似文献   
785.
Many devices heavily rely on combinatorial material optimization. However, new material alloys are classically developed by studying only a fraction of giant chemical space, while many intermediate compositions remain unmade in light of the lack of methods to synthesize gapless material libraries. Here report a high-throughput all-in-one material platform to obtain and study compositionally-tunable alloys from solution is reported. This strategy is applied to make all CsxMAyFAzPbI3 perovskite alloys (MA and FA stand for methylammonium and formamidinium, respectively), in less than 10 min, on a single film, on which 520 unique alloys are then studied. Through stability mapping of all these alloys in air supersaturated with moisture, a range of targeted perovskites are found, which are then chosen to make efficient and stable solar cells in relaxed fabrication conditions, in ambient air. This all-in-one platform provides access to an unprecedented library of compositional space with no unmade alloys, and hence aids in a comprehensive accelerated discovery of efficient energy materials.  相似文献   
786.
Moradi  Parisa  Vafaee  Yavar  Mozafari  Ali Akbar  Tahir  Nawroz Abdul-razzak 《SILICON》2022,14(16):10559-10569
Silicon - Salinity is one of the most crucial abiotic stresses, which is the consequence of an increase in the concentration of NaCl ions, influencing the plant’s growth, development, and...  相似文献   
787.
Fragility curves development in structures has always been a focus of research interest among structural and earthquake engineers for which the maximum story drift is usually considered as the engineering demand parameter (EDP) known as the conventional approach. This paper aims at calculating the fragility curves of a tall building with outrigger braced system by considering the plastic strain energy as the EDP and compare it with the conventional approach. In addition, the effect of optimizing the position of outriggers on the exceedance probability of the structure under near- and far-fault seismic loadings is investigated in this paper. Fragility curves of this structure in four performance levels including immediate occupancy (IO), life safety (LS), collapse prevention (CP), and instability is extracted based on the conventional method. The fragility curves for the aforementioned performance levels are also extracted based on the plastic strain energy and compared with the conventional approach. The results have demonstrated that optimizing the location of the bracing system would lower the exceedance probability of the structure. Moreover, the exceedance probability of the investigated building with outrigger braced system under far-fault records in various levels is more than that of near-fault records. It is also concluded that the conventional approach would lead to more conservative results compared with the energy approach.  相似文献   
788.
This paper describes a new unconditionally stable numerical method for the full‐wave physical modeling of semiconductor devices by a combination of the finite‐difference Laguerre time‐domain (FDLTD) and alternative direction implicit finite‐difference time‐domain (ADI‐FDTD) approaches. The unconditionally stable method by using FDLTD scheme for the electromagnetic model and semi‐implicit ADI‐FDTD approach for the active model leads to a significant decrease in the full‐wave simulation time. Numerical simulations of an example transistor and a power amplifier show the efficiency of presented method for the full‐wave simulation of mm‐wave active circuits. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
789.
The famous two-balloon experiment involves two identical balloons filled up with air and connected via a hollow tube, and upon onsetting the experiment one of the balloons shrinks and the other expands. Here, we present the liquid version of that experiment. We use superhydrophobic (SHP) substrates to form spherical droplets and connect them with a capillary channel. Different droplet sizes, substrates of different hydrophobicities, and various channel pathways are investigated, and morphometric parameters of the droplets are measured through image processing. In the case of SHP substrates, the pumping is from the smaller droplet to the larger one, similar to the two-balloon experiment. However, if one or both of the droplets are positioned on a normal substrate the curvature radius will indicate the direction of pumping. We interpret the results by considering the Laplace pressures and the surface tension applied by the channel at the connecting points.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号