首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4115篇
  免费   209篇
  国内免费   23篇
电工技术   51篇
综合类   12篇
化学工业   1413篇
金属工艺   97篇
机械仪表   126篇
建筑科学   110篇
矿业工程   1篇
能源动力   287篇
轻工业   490篇
水利工程   35篇
石油天然气   31篇
无线电   470篇
一般工业技术   619篇
冶金工业   118篇
原子能技术   21篇
自动化技术   466篇
  2024年   12篇
  2023年   58篇
  2022年   165篇
  2021年   234篇
  2020年   160篇
  2019年   182篇
  2018年   222篇
  2017年   201篇
  2016年   234篇
  2015年   171篇
  2014年   238篇
  2013年   423篇
  2012年   302篇
  2011年   274篇
  2010年   188篇
  2009年   186篇
  2008年   123篇
  2007年   93篇
  2006年   96篇
  2005年   55篇
  2004年   72篇
  2003年   51篇
  2002年   49篇
  2001年   57篇
  2000年   49篇
  1999年   40篇
  1998年   51篇
  1997年   42篇
  1996年   34篇
  1995年   34篇
  1994年   24篇
  1993年   16篇
  1992年   22篇
  1991年   14篇
  1990年   15篇
  1989年   10篇
  1988年   11篇
  1987年   9篇
  1986年   9篇
  1985年   16篇
  1984年   10篇
  1983年   13篇
  1982年   7篇
  1981年   9篇
  1980年   14篇
  1979年   7篇
  1976年   12篇
  1974年   4篇
  1973年   5篇
  1972年   7篇
排序方式: 共有4347条查询结果,搜索用时 11 毫秒
81.
Appropriate membrane for blood contacting applications requires hemocompatibility and high permeation flux; it should inhibit proteins or platelets adsorption and still possess high permeability. Aiming to improve the polyethersulfone (PES) hollow fiber membrane hemocompatibility, sulfonated polyether ether ketone (SPEEK) is self‐synthesized in the present research and added to PES in different ratios. Scanning electron microscopy images have revealed significant changes in PES membranes structure after addition of SPEEK, which can influence water permeation property of the membranes. Water contact angles of the membranes have reduced from 75° to 50° after addition of 4 wt% SPEEK. Influence of SPEEK addition on hemocompatibility of the PES membranes is evaluated via protein (bovine serum albumin) adsorption, platelet attachment, and coagulation time (APTT and TT) assays. Obtained results reveal that hemocompatibility of the modified hollow fiber membranes is enhanced as a result of emerging repulsive forces between negative charges on the membranes surface and negatively charge blood components.

  相似文献   

82.
Journal of Applied Electrochemistry - A microbial fuel cell (MFC) is an electricity-generating device utilising electrochemically active microorganisms as biocatalysts. Using MFC as a biosensor to...  相似文献   
83.

This work deals with the synthesis of ZnFe2O4 NPs and studies the effect of addition on the physical properties PVDF/PVC blend. XRD affirmed the formation of ZnFe2O4 NPs and HRTEM shows that the size of the prepared ZnFe2O4 NPs ranged from 20 to 55 nm. The effect of ZnFe2O4 on the behavior of PVDF/PVC was studied through XRD, ATR-FTIR, FESEM and UV–Visible spectroscopy. XRD revealed that the addition of ZnFe2O4 NPs enhanced the crystallinity of PVDF/PVC blend system and also confirmed the incorporation of ZnFe2O4 NPs by appearing a diffraction peak at 2θ equals 35°. ATR-FTIR affirmed the interaction between blend sample and ZnFe2O4 NPs by appearing new bands 554 cm?1 and 421 cm?1 which are corresponded to ZnFe2O4 NPs functional group with appearing a new band at 603 cm?1. FESEM showed that the addition of ZnFe2O4 to PVDF/PVC blend improved surface properties, for example, roughness average has been increased from 319 to 414 nm while maximum height increased from 260 to 473 nm for PVDF/PVC and PVDF/PVC/10% ZnFe2O4, respectively. Optical properties and band gap calculations revealed that addition of ZnFe2O4 NPs changes the structure of polyblend samples which results due to the formation of localized states. The removal efficiency of Cd (II) by using PVDF/PVC/10% ZnFe2O4 reached about 50% at pH 6 after 60 min. the absorption mechanism as well as kinetics isotherm have been studied. It is found that adsorption of Cd (II) occurred through the Langmuir mechanism and fellow pseudo-second order isotherm.

  相似文献   
84.

In this study, mercury iodide (HgI2) nanoparticles (NPs) were synthesized by pulsed laser ablation in ethanol at laser fluences of 22.9, 33.1, and 43.3 J/cm2. The effect of laser fluence on the structural and optical properties of HgI2 NPs was studied. X-ray diffraction findings reveal that all synthesized HgI2 samples were polycrystalline in nature with orthorhombic structure. Absorption peak was appeared at 474 nm and the optical energy gap of HgI2 NPs decreases from 2.13 to 2.05 eV as laser fluence increased from 22.9 to 43.3 J/cm2. Zeta potential (ZP) results confirm that the nanoparticles synthesized at 22.9 and 33.1 J/cm2 have high degree of stability. Fluorescence measurements show the presence of several emission bands. Raman spectra of HgI2 NPs show the presence of six vibration modes centered at 15, 29, 37, 44, 51, and 70 cm?1. Fourier transform infrared (FT-IR) results show the presence of two bonds, namely, C–O and Hg-I. Transmission Electron Microscope (TEM) results showed that the formation of spherical nanoparticles for sample prepared at 22.9 J/cm2, 25–75 nm in size. While the nanoparticles synthesized with 33.1 and 43.3 J/cm2 exhibit nanorods and nanotubes morphologies, respectively. The dark I–V characteristics of β-HgI2 NPs/Si heterojunction photodetectors show rectification properties and the junction quality depends on the laser fluence and the best junction characteristics was obtained for heterojunction prepared at 33.1 J/cm2. The white light photosensitivity of the HgI2/p-Si photodetectors was measured at reverse bias under different intensities. The maximum responsivity reached was 3.39A/W at 450 nm for photodetector prepared at 33.1 J/cm2.

  相似文献   
85.
Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts. Despite their very promising separation performance, chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite. The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer. From material point of view, a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement. Various strategies, particularly those involved membrane material optimization and surface modifications, have been established to address this issue. This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide. The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and post-fabrication membrane modifications using a broad range of functional materials. The challenges and future directions in this field are also highlighted.  相似文献   
86.
In this article, a new magneto rheological (MR) sponge damper is proposed for suppression of vibrations in a washing machine. The article presents design optimization of geometric parameters of MR sponge damper (MRSD) using the finite element analysis (FEA) and first order derivative techniques for a washing machine. The article explains the hysteresis behavior and the relationship of damping force with input current for the proposed MRSD. Moreover, the characteristics of the MRSD such as energy dissipation and equivalent damping coefficient are investigated experimentally in terms of input current and excitation amplitude. The passive dampers installed in washing machine are ineffective in reducing unwanted vibrations at resonant frequencies due to real time unbalanced mass. For this purpose, a test setup is established in order to compare the performance of passive dampers with the proposed MRSDs in a washing machine. It is noticed that MRSDs reduce average vibrations of 75.61 % in a low frequency band, whereas in a high frequency band, the MRSDs lessen average vibrations of 30.57 % in a washing machine. In order to determine the performance of proposed design MRSD, a detailed comparison of the performance parameters, such as total damping force, passive force, maximum average vibrations after suppression by MR dampers, maximum current and power ratings is provided with the existing designs of MR damper for washing machine from the literature.  相似文献   
87.
A conventional free‐radical initiating process was used to prepare graft copolymers from acrylonitrile (AN) with corn‐cob cellulose with ceric ammonium nitrate (CAN) as an initiator. The optimum grafting was achieved with corn‐cob cellulose (anhydroglucose unit, AGU), mineral acid (H2SO4), CAN, and AN at concentrations of 0.133, 0.081, 0.0145, and 1.056 mol/L, respectively. Furthermore, the nitrile functional groups of the grafted copolymers were converted to amidoxime ligands with hydroxylamine under basic conditions of pH 11 with 4 h of stirring at 70°C. The purified acrylic polymer‐grafted cellulose and polyamidoxime ligand were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The ligand showed an excellent copper binding capacity (4.14 mmol/g) with a faster rate of adsorption (average exchange rate = 7 min), and it showed a good adsorption capacity for other metal ions as well. The metal‐ion adsorption capacities of the ligand were pH‐dependent in the following order: Cu2+ > Co2+ > Mn2+ > Cr3+ > Fe3+ > Zn2+ > Ni2+. The metal‐ion removal efficiency was very high; up to 99% was removed from the aqueous media at a low concentration. These new polymeric chelating ligands could be used to remove aforementioned toxic metal ions from industrial wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40833.  相似文献   
88.
In attempt to compare the removal efficiency and yield of the activated carbon prepared using the conventional and microwave‐assisted heating is the focus of this work. Toward this olive stone (a biomass precursor) is activated using the popular activating agent potassium hydroxide. The process optimization exercise is carried out by using the standard full factorial statistical design of experiments (response surface methodology). The activated carbons prepared under the optimized conditions are compared based on the adsorption capacity and yield. The adsorption capacity was found higher using microwave heating as compared with conventional heating. The microwave heating requires significantly lesser holding time as compared to conventional heating method to produce activated carbon of comparable quality, with higher yield. The BET surface area of carbon using microwave heating is significantly higher than the conventional heating. Although the mesopore surface area of carbon is not vary significantly, the activation time, power, and nitrogen gas consumption are significantly lower than the conventional heating rendering that the activation process via microwave is more economical than that via conventional heating. The adsorption isotherm data fitted the Langmuir isotherm well and the monolayer adsorption capacity was found to be 12.0 and 8.42 mg/g for microwave and thermally heated activated carbon, respectively. Regeneration studies showed that microwave‐irradiated and thermally heated olive stone could be used several times by desorption with an HCl reagent. Both carbons can be used for the efficient removal of Ni2+ (>99%) from contaminated wastewater. © 2013 American Institute of Chemical Engineers AIChE J, 60: 237–250, 2014  相似文献   
89.
The Cr3+ ions doped multi-oxide ZnFe2−xCrxO4 ferrite nanoparticles have been synthesized by chemical co-precipitation method. Site occupancies of Zn2+, Cr3+ and Fe3+ ions were analyzed using X-ray diffraction data and Buerger's method. The effect of the constituent phase variation on the magnetic hysteresis behavior was examined by saturation magnetization which decreases with the increase in Cr3+ content in place of Fe3+ ions at octahedral B-site. Typical blocking temperature (TB) around 90 K was observed by zero field cooling and field cooling magnetization study. Room temperature Mössbauer spectra show two paramagnetic doublets (tetrahedral and octahedral sites). The isomer shifts of both doublets decrease whereas quadrupole splitting and relative area of tetrahedral A-site increases with increasing Cr3+ substitution. The dielectric constant (measured on compositions x=0, 0.4, 0.8 and 1.0) increases when the temperature increases as in the semiconductor. This behavior is attributed to the hopping of electrons between Fe2+ and Fe3+ ions with a thermal activation.  相似文献   
90.
The performances of three advanced non-linear controllers are analyzed for the optimal set point tracking of styrene free radical polymerization (FRP) in batch reactors. The three controllers are the artificial neural network-based MPC (NN-MPC), the artificial fuzzy logic controller (FLC) as well as the generic model controller (GMC). A recently developed hybrid model (Hosen et al., 2011a. Asia-Pac. J. Chem. Eng. 6(2), 274) is utilized in the control study to design and tune the proposed controllers. The optimal minimum temperature profiles are determined using the Hamiltonian maximum principle. Different types of disturbances are introduced and applied to examine the stability of controller performance. The experimental studies revealed that the performance of the NN-MPC is superior to that of FLC and GMC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号