首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1933篇
  免费   121篇
  国内免费   7篇
电工技术   27篇
综合类   9篇
化学工业   659篇
金属工艺   40篇
机械仪表   69篇
建筑科学   48篇
能源动力   146篇
轻工业   261篇
水利工程   17篇
石油天然气   9篇
无线电   168篇
一般工业技术   317篇
冶金工业   35篇
原子能技术   4篇
自动化技术   252篇
  2024年   5篇
  2023年   37篇
  2022年   105篇
  2021年   142篇
  2020年   94篇
  2019年   99篇
  2018年   126篇
  2017年   110篇
  2016年   133篇
  2015年   92篇
  2014年   128篇
  2013年   215篇
  2012年   179篇
  2011年   157篇
  2010年   94篇
  2009年   72篇
  2008年   40篇
  2007年   31篇
  2006年   26篇
  2005年   25篇
  2004年   18篇
  2003年   19篇
  2002年   12篇
  2001年   18篇
  2000年   13篇
  1999年   5篇
  1998年   12篇
  1997年   2篇
  1996年   8篇
  1995年   10篇
  1994年   12篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有2061条查询结果,搜索用时 187 毫秒
991.
This paper investigates the errors generated during the fabrication stage for producing complex anatomical replicas derived from computed tomography coupled with the 3D additive manufacturing methods. Based on this research work, it is shown that patient-specific model based on computed tomography data can be converted into computer numerically controlled G-code. It is shown that 3D extrusion-based additive manufacturing technology is accurate to ±3 % equating to ±200 μm surface deviations due to plastic shrinkage and distortion formed during the process. Polylactic acid plastic extrusion through a 200-μm bore nozzle has resulted in a model being produced with an Ra roughness of 35.5 μm. An evaluation on the errors generated during the fabrication process has been used to accurately produce an adult female mandible. Internal nerve channels and complex external bone geometry has been produced within the model. It is shown that using this process results in bone complexity and accuracy required for producing low-cost surgical grades models which is in comparison with traditional selective laser sintering manufacturing techniques. The surface accuracies suggest that the reproduction of anatomically complex representative structures by 3D plastic extrusion additive manufacturing which can be used for pre-surgical planning.  相似文献   
992.
993.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   
994.
Biocomposites of kenaf fiber (KF) and polylactic acid (PLA) were prepared by an internal mixer and compression molding. PLA was plasticized with polyethylene glycol (PEG) (10 wt%) and evaluated as the polymer matrix (p‐PLA). Fiber loadings were varied between 0 and 40 wt%. The tensile, dynamic mechanical, and morphological properties and water absorption behavior of these composites were studied. Reinforcing effect of KF was observed when fiber loading exceeded 10 wt% despite of the inferior fiber‐matrix adhesion observed via scanning electron microscopy (SEM). Un‐plasticized PLA/KF composite exhibited higher tensile properties than its plasticized counterpart. Fiber breakage and heavily coated short pulled‐out of fibers were observed from the SEM micrographs of the composite. The presence of PEG might have disturbed the fiber‐matrix interaction between KF and PLA in the plasticized composites. Addition of PEG slightly improved the un‐notched impact strength of the composites. Dynamic mechanical analysis showed that the storage and loss moduli of p‐PLA/KF composites increased with the increase in fiber loading due to increasing restrictions to mobility of the polymer molecules. The tan delta of the composites in contrast showed an opposite trend. p‐PLA and p‐PLA/KF composites exhibited non‐Fickian behavior of water absorption. SEM examination revealed microcracks on p‐PLA and p‐PLA/KF surfaces. POLYM. COMPOS., 31:1213–1222, 2010. © 2009 Society of Plastics Engineers  相似文献   
995.
Epoxidized natural rubber–alumina nanoparticle composites were prepared by melt compounding with an internal mixer for a constant filler loading of 10 phr. Mixer parameters such as the mixing temperature, mixing time, and rotor speed were screened and optimized with response surface methodology to maximize the impact strength. The parameters were selected as three independent variables and the impact strength (J/m) was selected as the response in a screening factor study. The mixing temperature and its interaction terms were identified as insignificant factors with a P value greater than 0.0500. The optimum calculated values of the tested variables (rotor speed and mixing time) for the maximum impact strength were found to be a rotor speed of 60 rpm and a mixing time of 6 min with a predicted impact strength of 208.88 J/m. These predicted optimum parameters were tested in real experiments. The final impact strength was found to be close to the predicted value of 215.84 J/m, with only a 3.33% deviation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
996.
Combined degumming and bleaching is the first stage of processing in a modern physical refining plant. In the current practice, the amount of phosphoric acid (degumming agent) and bleaching earth (bleaching agent) added during this process is usually fixed within a certain range. There is no system that can estimate the right amount of chemicals to be added in accordance with the quality of crude palm oil (CPO) used. The use of an Artificial Neural Network (ANN) for an improved operating procedure was explored in this process. A feed forward neural network was designed using a back-propagation training algorithm. The optimum network for the response factor of phosphoric acid and bleaching earth dosages prediction were selected from topologies with the smallest validation error. Comparisons of ANN predicted results with industrial practice were made. It is proven in this study that ANN can be effectively used to determine the phosphoric acid and bleaching earth dosages for the combined degumming and bleaching process. In fact, ANN gives much more precise required dosages depending on the quality of the CPO used as feedstock. Therefore, the combined degumming and bleaching process can be further optimised with savings in cost and time through the use of ANN.  相似文献   
997.
Clarification of glycerin-rich solution is one of the potential applications of membrane within the oleochemical industry. However, one of the barriers in successfully utilizing the use of membranes such as ultrafiltration (UF) has been due to the fouling. In this work, flux decline during ultrafiltration of the glycerin-rich solutions was studied by using commercialized polymeric polyethersulphone (PES) membrane. Influence of fatty acids as foulants model (palmitic acid, stearic acid and oleic acid), pH of feed solution (3-10) and molecular weight cut-off (5 kDa, 20 kDa and 25 kDa) were analyzed. All the experiments were performed at constant pressure (2 bar) and temperature (40 °C). The Hermia's model was used to analyze the fouling mechanism during the flux decline which involve cake layer model due to adsorption of solute as well as pore blocking model. All the different types of flux decline kinetics were found to occur during the permeation of glycerin-rich solutions. However, the contribution of resistance due to cake layer formation was small for all the conditions studied. The fouling mechanisms were found to depend on the hydrophobicity of the PES membrane itself as well as the nature of foulants used in the study.  相似文献   
998.
A surface tension study was performed on mixed amphiphilic drug-nonionic surfactant systems. The drugs used were adiphenine hydrochloride and nortriptyline hydrochloride whereas surfactants were ethoxylated sorbitan esters and polyethylene oxide?Cpolypropylene oxide?Cpolyethylene oxide triblocks. The critical micelle concentration (CMC) and CMCid (CMC at ideal mixing condition) values suggest nonideal and attractive interactions among the components. The micellar mole fraction $ (X_{ 1}^{\text{m}} ) $ values calculated using Rubingh??s model indicate predominance of the nonionic surfactant in micelle formation. The mole fraction of surfactant in mixed monolayer $ (X_{1}^{\sigma } ) $ values are greater than $ X_{ 1}^{\text{m}} $ values, indicating a greater contribution of surfactant in monolayer formation. Thermodynamic parameters, viz. Gibbs energy of micellization $ (\Updelta G_{\text{m}}^{\text{o}} ) $ , Gibbs energy of adsorption $ (\Updelta G_{\text{ad}}^{\text{o}} ) $ , and excess free energy of mixed micelles $ (\Updelta G_{\text{ex}}^{\text{m}} ) $ and monolayers $ (\Updelta G_{\text{ex}}^{\sigma } ) $ were also evaluated. All these values suggest stable mixed micelle and mixed monolayer formation.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号