The optimal selection of a datacenter is one of the most important challenges in the structure of a network for the wide distribution of resources in the environment of a geographically distributed cloud. This is due to the variety of datacenters with different quality-of-service (QoS) attributes. The user’s requests and the conditions of the service-level agreements (SLAs) should be considered in the selection of datacenters. In terms of the frequency of datacenters and the range of QoS attributes, the selection of the optimal datacenter is an NP-hard problem. A method is therefore required that can suggest the best datacenter, based on the user’s request and SLAs. Various attributes are considered in the SLA; in the current research, the focus is on the four important attributes of cost, response time, availability, and reliability. In a geo-distributed cloud environment, the nearest datacenter should be suggested after receiving the user’s request, and according to its conditions, SLA violations can be minimized. In the approach proposed here, datacenters are clustered according to these four important attributes, so that the user can access these quickly based on specific need. In addition, in this method, cost and response time are taken as negative criteria, while accessibility and reliability are taken as positive, and the multi-objective NSGA-II algorithm is used for the selection of the optimal datacenter according to these positive and negative attributes. In this paper, the proposed method, known as NSGAII_Cluster, is implemented with the Random, Greedy and MOPSO algorithms; the extent of SLA violation of each of the above-mentioned attributes are compared using four methods. The simulation results indicate that compared to the Random, Greedy and MOPSO methods, the proposed approach has fewer SLA violations in terms of the cost, response time, availability, and reliability of the selected datacenters. 相似文献
There are many reasons to worry that the current congestion control schemes in the Internet may be reaching its limits. Since the nature is a source of excellent solutions for complex problems, this work attempts to solve the congestion control problem, by adopting some biological principles and mechanisms. The current work proposes that the congestion problem in the Internet can be addressed through an inspiration from the population control tactics in nature. Toward this idea, each flow (W ) in the networ... 相似文献
With a sharp increase in the information volume, analyzing and retrieving this vast data volume is much more essential than ever. One of the main techniques that would be beneficial in this regard is called the Clustering method. Clustering aims to classify objects so that all objects within a cluster have similar features while other objects in different clusters are as distinct as possible. One of the most widely used clustering algorithms with the well and approved performance in different applications is the k-means algorithm. The main problem of the k-means algorithm is its performance which can be directly affected by the selection in the primary clusters. Lack of attention to this crucial issue has consequences such as creating empty clusters and decreasing the convergence time. Besides, the selection of appropriate initial seeds can reduce the cluster’s inconsistency. In this paper, we present a new method to determine the initial seeds of the k-mean algorithm to improve the accuracy and decrease the number of iterations of the algorithm. For this purpose, a new method is proposed considering the average distance between objects to determine the initial seeds. Our method attempts to provide a proper tradeoff between the accuracy and speed of the clustering algorithm. The experimental results showed that our proposed approach outperforms the Chithra with 1.7% and 2.1% in terms of clustering accuracy for Wine and Abalone detection data, respectively. Furthermore, achieved results indicate that comparing with the Reverse Nearest Neighbor (RNN) search approach, the proposed method has a higher convergence speed. 相似文献
Todays, XML as a de facto standard is used to broadcast data over mobile wireless networks. In these networks, mobile clients send their XML queries over a wireless broadcast channel and recieve their desired XML data from the channel. However, downloading the whole XML data by a mobile device is a challenge since the mobile devices used by clients are small battery powered devices with limited resources.
To meet this challenge, the XML data should be indexed in such a way that the desired XML data can be found easily and only such data can be downloaded instead of the whole XML data by the mobile clients. Several indexing methods are proposed to selectively access the XML data over an XML stream. However, the existing indexing methods cause an increase in the size of XML stream by including some extra information over the XML stream. In this paper, a new XML stream structure is proposed to disseminate the XML data over a broadcast channel by grouping and summarizing the structural information of XML nodes. By summarizing such information, the size of XML stream can be reduced and therefore, the latency of retrieving the desired XML data over a wirless broadcast channel can be reduced. The proposed XML stream structure also contains indexes in order to skip from the irrelevant parts over the XML stream. It therefore can reduce the energy consumption of mobile devices in downloading the results of XML queries. In addition, our proposed XML stream structure can process different types of XML queries and experimental results showed that it improves the performace of XML query processing over the XML data stream compared to the existing research works in terms of access and tuning times.
High performance clusters, which are established by connecting many computing nodes together, are known as one of main architectures to obtain extremely high performance. Currently, these systems are moving from multi-core architectures to many-core architectures to enhance their computational capabilities. This trend would eventually cause network interfaces to be a performance bottleneck because these interfaces are few in number and cannot handle multiple network requests at a time. The consequence of such issue would be higher waiting time at the network interface queue and lower performance. In this paper, we tackle this problem by introducing a process mapping algorithm, which attempts to improve inter-node communications in multi-core clusters. Our mapping strategy reduces accesses to the network interface by distributing communication-intensive processes among computing nodes, which leads to lower waiting time at the network interface queue. Performance results for synthetic and real workloads reveal that the proposed strategy improves the performance from 8 % up to 90 % in tested cases compared to other methods. 相似文献
Regarding to the variations of the load and unmodeled dynamic, robot manipulators are known as a nonlinear dynamic system. Overcoming such problems like uncertainties and nonlinear characteristics in the model of two-link manipulator is the principal goal of this paper. To approach to this aim, a neural network is combined with a linear robust control in which the result has the advantages of, the first, approximated nonlinear elements and the second, the guaranteed robustness. To design the proposed controller, at first, multivariable feedback linearization is employed to convert the nonlinear model to linear one. Second, the unknown parameters of the system are identified by neural network based on a new proposed learning rule. Third, Mixed linear feedback-H?∞? robust control method is proposed to stabilize the closed loop system. The closed loop system based on the proposed controller is analyzed and some numerical simulations are performed. Results show suitable responses of the closed loop system. 相似文献
In this paper, metamodeling and five well-known metaheuristic optimization algorithms were used to reduce the weight and improve crash and NVH attributes of a vehicle simultaneously. A high-fidelity full vehicle model is used to analyze peak acceleration, intrusion and component’s internal-energy under Full-Frontal, Offset-Frontal, and Side crash scenarios as well as vehicle natural frequencies. The radial basis functions method is used to approximate the structural responses. A nonlinear surrogate-based mass minimization was formulated and solved by five different optimization algorithms under crash-vibration constraints. The performance of these algorithms is investigated and discussed. 相似文献
To improve the performance of embedded processors, an effective technique is collapsing critical computation subgraphs as
application-specific instruction set extensions and executing them on custom functional units. The problem with this approach
is the immense cost and the long times required to design a new processor for each application. As a solution to this issue,
we propose an adaptive extensible processor in which custom instructions (CIs) are generated and added after chip-fabrication.
To support this feature, custom functional units are replaced by a reconfigurable matrix of functional units (FUs). A systematic
quantitative approach is used for determining the appropriate structure of the reconfigurable functional unit (RFU). We also
introduce an integrated framework for generating mappable CIs on the RFU. Using this architecture, performance is improved
by up to 1.33, with an average improvement of 1.16, compared to a 4-issue in-order RISC processor. By partitioning the configuration
memory, detecting similar/subset CIs and merging small CIs, the size of the configuration memory is reduced by 40%. 相似文献
High utility sequential pattern (HUSP) mining has emerged as an important topic in data mining. A number of studies have been conducted on mining HUSPs, but they are mainly intended for non-streaming data and thus do not take data stream characteristics into consideration. Streaming data are fast changing, continuously generated unbounded in quantity. Such data can easily exhaust computer resources (e.g., memory) unless a proper resource-aware mining is performed. In this study, we explore the fundamental problem of how limited memory can be best utilized to produce high quality HUSPs over a data stream. We design an approximation algorithm, called MAHUSP, that employs memory adaptive mechanisms to use a bounded portion of memory, in order to efficiently discover HUSPs over data streams. An efficient tree structure, called MAS-Tree, is proposed to store potential HUSPs over a data stream. MAHUSP guarantees that all HUSPs are discovered in certain circumstances. Our experimental study shows that our algorithm can not only discover HUSPs over data streams efficiently, but also adapt to memory allocation with limited sacrifices in the quality of discovered HUSPs. Furthermore, in order to show the effectiveness and efficiency of MAHUSP in real-life applications, we apply our proposed algorithm to a web clickstream dataset obtained from a Canadian news portal to showcase users’ reading behavior, and to a real biosequence database to identify disease-related gene regulation sequential patterns. The results show that MAHUSP effectively discovers useful and meaningful patterns in both cases. 相似文献