首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   13篇
  国内免费   1篇
电工技术   4篇
化学工业   70篇
金属工艺   4篇
机械仪表   8篇
建筑科学   7篇
能源动力   9篇
轻工业   31篇
水利工程   1篇
无线电   16篇
一般工业技术   28篇
冶金工业   22篇
自动化技术   28篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   13篇
  2020年   10篇
  2019年   13篇
  2018年   12篇
  2017年   9篇
  2016年   19篇
  2015年   3篇
  2014年   11篇
  2013年   31篇
  2012年   10篇
  2011年   9篇
  2010年   8篇
  2009年   9篇
  2008年   13篇
  2007年   7篇
  2006年   9篇
  2005年   4篇
  2004年   1篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  1998年   5篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1989年   1篇
  1986年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有228条查询结果,搜索用时 31 毫秒
11.
It is important to give water-repellent and antibacterial properties to the acrylonitrile butadiene styrene (ABS) surfaces of the hearing aids. In this study, the sol–gel Si and sol–gel Ti solutions were prepared from the reactions of silicon ethoxide, titanium butoxide and methacrylic acid. The catalyst and Dynasylan F8815 were added to the sol–gel solutions to give hydrophobic properties onto the ABS surfaces. Additionally, silver nanoparticles were synthesized by nanosecond laser and added to the coating solutions to give extra antibacterial properties. The surfaces of the ABS targets were coated using the sol–gel dip coating and pulsed laser deposition techniques. The coatings with good adhesion between film and substrate and good water-repellent properties were achieved. The average contact angles for the coated ABS surfaces were measured in the range between 120 and 125 degrees. The obtained sol–gel materials and produced thin films onto the ABS surfaces were also analyzed in terms of the antibacterial properties. The highly antibacterial properties were observed in the sol–gel solutions and the thin films.  相似文献   
12.
This study evaluated the effect of air-abrasion parameters such as particle size, distance, and time on adhesion of resin cement to zirconium dioxide (Y-TZP) and tm phase transformation. Y-TZP blocks (N = 80) (In-Ceram YZ, Vita) (4 mm3?×?4 mm3?×?3 mm3) were assigned into eight groups (n = 10): air-abrasion with 30 μm (CoJet Sand, S30) and 110 μm (Rocatec-Plus, S110) silica-coated alumina particles, applied for either for 10–20 s (T = time), from a distance of 10–20 mm (D = distance), composing the following groups: S30T10D10, S30T10D20, S30T20D10, S30T20D20, S110T10D10, S110T10D20, S110T20D10, and S110T20D20. Resin composite (RelyX ARC) was bonded to Y-TZP blocks in polyethylene molds. The specimens were aged (10,000 thermal cycles and water storage for 90 days) prior to shear bond test. Failure types were analyzed under stereomicroscope and SEM, and phase transformation was calculated. Data (MPa) were analyzed using 3-way ANOVA and Tukey’s tests. Air-abrasion with 110 μm silica particles (10.96) presented significantly higher bond strength (p = 0.0149) compared to 30 μm (8.96). Time (p = 0.403) and distance (p = 0.179) parameters did not affect the results significantly. Air-abrasion with 110 μm particles (12.3) promoted higher bond strength than that of 30 μm (6.4) when applied for 10 s from a distance of 10 mm (Tukey’s). Failure types were predominantly adhesive. Phase transformation ranged between 30.3 and 35.9% for 30 μm particles and 23.8–43.7% for 110 μm particles. While the size of silica-coated alumina particles were more relevant parameter for resin cement adhesion to Y-TZP, time (up to 20 s) and distance (up to 20 mm) appear to be less pertinent.  相似文献   
13.
Alkylation reactions of benzene with propylene using heterogeneous catalysts H+-β zeolite, MCM-22, and ZSM-5 were studied for their affinity for cumene production. This work focused on the gas-phase reaction using different crystalline catalysts at several temperatures and amounts of reactants using both batch and continuous fixed-bed reactors. The properties of baseline commercial H+-β catalysts versus versions modified with Ga, La, and Pt were studied. Quantitative analysis of product mixture was performed by gas chromatography. For the batch reactor, β-zeolite produced the highest cumene yield and selectivity of 72% and 92%, respectively, at 225°C. At this temperature, a benzene:propylene dilution of 7:1 molar ratio was the optimum. For the continuous system, cumene production is favored at lower space velocities, higher benzene-to-propylene ratio, and temperatures close to 225°C. Ga modification of the H+-β zeolite significantly enhanced cumene yield in the continuous fixed-bed reactor at 225°C, from 27% of the unmodified β-zeolite to 36% for the Ga-modified one. The life span of modified β-catalysts was studied in the fixed-bed reactor for the first eight hours of reaction.  相似文献   
14.
Cellulose acetate membranes (CA) were modified by means of plasma polymerization of ethylene diamine (EDA) and n‐butylamine (n‐BA). The motivation for this work was the application of a modified membrane for the single‐layer enzyme electrode. A tubular reactor with the external radiofrequency (13.56 MHz) excitation was used. Surface modification was performed at 5, 10, and 15 W power (at 27 Pa working pressure) for 5, 10, 15 min. Modified surfaces were characterized in detail by FTIR–ATR, XPS (ESCA), contact angle, and enzyme immobilization activity. The best treatment results were obtained for EDA with 5 W and 30 min and 15 W and 10 min. These results are discussed using surface analysis data. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1341–1352, 2001  相似文献   
15.
The aim of the present study was to formulate suspension type inhalation aerosols by various types of auxiliary materials, and to select the formulation with the highest proportion of the effective particle size. The examined suspension type aerosol contained sodium cromoglycate as an active compound. For the stabilization of the suspension, the applied surface active ingredients were oleic acid and oleyl oleate, and dimethyl siloxane polymer was selected as hydrophobizing agent. Factorial design was used for the optimization of the experimental results. On the basis of our results, the correct types and amounts of auxiliary materials can be selected to obtain the therapeutically effective formulation.  相似文献   
16.
This work presents the theoretical and experimental studies conducted in Aerospace Engineering Department of Middle East Technical University on smart structures with particular attention given to the structural modelling characteristics and active suppression of in-vacuo vibrations. The smart structures considered in these analyses are finite and flat aluminium cantilever beam-like (called as smart beam) and plate-like (called as smart fin) structures with surface bonded lead–zirconate–titanate patches. Finite element models of smart beam and smart fin are obtained. Then the experimental studies regarding open loop behaviour of the structures are performed by using strain gauges and laser displacement sensor to determine the system models. Further studies are carried out to obtain H and μ-synthesis controllers which are intended to be used in the suppression of free and forced vibrations of the smart structures. It is observed that satisfactory attenuation levels are achieved and robust performance of the systems in the presence of uncertainties is ensured. In that respect a comparative study involving H and sliding mode controls is also conducted. Recently, the studies involving aerodynamic loading are also gathering pace.  相似文献   
17.
This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young’s modulus and strength is important in biomedical implants. Young’s modulus of specimens was calculated by using ultrasonic velocities. Calculated Young’s modulus values were compared and correlated with experimental values.  相似文献   
18.
Extracellular polymeric substances (EPS) have a presumed determinant role in the structure, architecture, strength, filterability, and settling behaviour of microbial solids in biological wastewater treatment processes. Consequently, numerous EPS extraction protocols have recently been published that aim to optimize the trade off between high EPS recovery and low cell lysis. Despite extensive efforts, the obtained results are often contradictory, even when analysing similar biomass samples and using similar experimental conditions, which greatly complicates the selection of an extraction protocol. This study presents a rigorous and critical assessment of existing physical and chemical EPS extraction methods applied to mixed-culture biomass samples (nitrifying, nitritation-anammox, and activated sludge biomass). A novel fluorescence-based method was developed and calibrated to quantify the lysis potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe underestimation of protein and carbohydrate concentrations by using standard analytical methods. Keeping both maximum EPS extraction yields and minimal biomass lysis as criteria, it was identified a sonication-based extraction method as the best to determine and compare tightly-bound EPS fractions in different biomass samples. Protein was consistently the main EPS component in all analysed samples. However, EPS from nitrifying enrichments was richer in DNA, the activated sludge EPS had a higher content in humic acids and carbohydrates, and the nitritation-anammox EPS, while similar in composition to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while DNA could only be found in tightly bound EPS fractions. In conclusion, the methodology presented herein supports the rational selection of analytical tools and EPS extraction protocols in further EPS characterization studies.  相似文献   
19.
The effect of annealing temperature on selected characteristics of polycrystalline La0.67Sr0.33MnO3 films, which have been produced on quartz substrates, was investigated. X-Ray powder diffraction patterns showed that the phase formation started at 873 K and all the films had perovskite structure. By increasing the annealing temperature, the lattice parameters were decreased. Scanning electron microscope indicated that the film thicknesses were approximately 3 μm and the average grain size of the samples varied between 30–100, 50–110, 70–120, and 100–150 nm for films annealed at 873, 973, 1,073, and 1,173 K, respectively. All the films showed a paramagnetic–ferromagnetic (TC) and metal–insulator (TIM) phase transition. The TC indicated a small variation [from 131 K (S4) to 124 K (S1)] as a function of annealing temperature, whereas the TIM went down from 212 K (S4) to 110 K (S1), a strong decrease of 102 K. A colossal magneto resistance with magneto resistance ratios of 130, 139, 156, and 163% were observed near TC and at 6 T magnetic field.  相似文献   
20.

Objectives

A new microfabrication method to produce low profile radio frequency (RF) resonant markers on catheter shafts was developed. A semi-active RF resonant marker incorporating a solenoid and a plate capacitor was constructed on the distal shaft of a 5 Fr guiding catheter. The resulting device can be used for interventional cardiovascular MRI procedures.

Materials and methods

Unlike current semi-active device visualization techniques that require rigid and bulky analog circuit components (capacitor and solenoid), we fabricated a low profile RF resonant marker directly on guiding the catheter surface by thin film metal deposition and electroplating processes using a modified physical vapor deposition system.

Results

The increase of the overall device profile thickness caused by the semi-active RF resonant marker (130 µm thick) was lowered by a factor of 4.6 compared with using the thinnest commercial non-magnetic and rigid circuit components (600 µm thick). Moreover, adequate visibility performance of the RF resonant marker in different orientations and overall RF safety were confirmed through in vitro experiments under MRI successfully.

Conclusion

The developed RF resonant marker on a clinical grade 5 Fr guiding catheter will enable several interventional congenital heart disease treatment procedures under MRI.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号