The responsiveness of networked applications is limited by communications delays, making network distance an important parameter in optimizing the choice of communications peers. Since accurate global snapshots are difficult and expensive to gather and maintain, it is desirable to use sampling techniques in the Internet to predict unknown network distances from a set of partially observed measurements. This paper makes three contributions. First, we present a model for representing and predicting distances in large-scale networks by matrix factorization which can model suboptimal and asymmetric routing policies, an improvement on previous approaches. Second, we describe two algorithms-singular value decomposition and non-negative matrix factorization-for representing a matrix of network distances as the product of two smaller matrices. Third, based on our model and algorithms, we have designed and implemented a scalable system-Internet Distance Estimation Service (IDES)-that predicts large numbers of network distances from limited samples of Internet measurements. Extensive simulations on real-world data sets show that IDES leads to more accurate, efficient and robust predictions of latencies in large-scale networks than existing approaches 相似文献
Antioxidants such as probucol and alpha-tocopherol have been shown to attenuate the oxidation of low-density lipoproteins (LDL) and atherosclerotic lesions in animal models of atherosclerosis. The purpose of this study is to determine the protection effect of antioxidants on endothelial cells when exposed to oxidized and native LDL. In a cell-free system, we found that probucol, alpha-tocopherol, and ascorbic acid inhibited copper-induced LDL oxidation by a dose-dependent fashion (from 1 microM to 10 mM). In porcine aortic endothelial cells, antioxidants alone did not change basal endothelin-1 (ET-1) secretion. When porcine aortic endothelial cells were exposed to LDL and oxidized-LDL, both of them stimulated ET-1 secretion dose-dependently, whereas oxidized-LDL elicited higher ET-1 secretion. However, probucol, alpha-tocopherol, and ascorbic acid did not prevent LDL or oxidized-LDL induced ET-1 secretion. Furthermore, nimodipine inhibited both of native and oxidized LDL induced ET-1 secretion. Since Ca2+ channel blocker reduced the elevation of induced ET-1 secretion, the [Ca2+]i is possibly involved for the regulation of ET-1 secretion. Our results suggest that antioxidants can only prevent the oxidation of LDL rather than oxidized and native LDL-induced ET-1 secretion in vascular endothelial cells. The increase in the [Ca2+]i of endothelial cells through the opening of voltage-dependent Ca2+ channels may be involved in the LDL-induced ET-1 release. 相似文献
The effect of local mixing on the performance of a reactor system is derived by the perturbation technique. It is found that the sign of the inner product of the adjoint vector λ and the acceleration vector ? is the only indicator as to whether or not local mixing at a certain point of a reaction path is desirable. A complex reaction system with competing side reactions of different order is treated as an example. The possibility of applying the results in this work to the selection of the optimal type of reactor is also discussed. 相似文献
The effects of the dielectric constant of the glass substrates on liquid crystal lens performances are studied. Lens properties and the optimum geometrical structure almost does not change with the dielectric constant. The driving voltages become low when glass substrates of high dielectric constant are used. 相似文献
Calcium carbonate crystals with various morphologies have been found in a variety of biospecimens and artificially synthesized structures. Usually, the diversity in morphology can be attributed to different types of interactions between the specific crystal faces and the environment or the templates used for the growth of CaCO3 crystals. On the other hand, isotropic amorphous calcium carbonate (ACC) has been recognized as the precursor of other crystalline calcium carbonate forms for both in vivo and in vitro systems. However, here we propose a self-confined amorphous template process leading to the anisotropic growth of single-crystalline calcite nanowires. Initiated by the assembly of precipitated nanoparticles, the calcite nanowires grew via the continuous precipitation of partly crystallized ACC nanodroplets onto their tips. Then, the crystalline domains in the tip, which were generated from the partly crystallized nanodroplets, coalesced in the interior of the nanowire to form a single-crystalline core. The ACC domains were left outside and spontaneously formed a protective shell to retard the precipitation of CaCO3 onto the side surface of the nanowire and thus guided the highly anisotropic growth of nanowires as a template.
This study proposes a novel shadow compensation and illumination normalization method under uncontrolled light conditions. First, we decompose the face image into two images based on the Lambertian theory, which corresponds to the large- and small-scale features, respectively. Then, the threshold minimum-and-maximum filter on the small-scale features to smooth the shadow edge is applied. After that, the robust Principal Component Analysis and some normalization methods are used to remove the shadow and normalize the face image on the large-scale features. In the end, the normalized face image is obtained by combining both results from the large- and small-scale features. Our main contribution is that a more reliable shadow compensation approach is found, which can get a better normalized face image. Experiments on the Extended Yale B, CMU-PIE and FRGC 2.0 (Face Recognition Grand Challenge) face datasets show that not only the recognition performance is significantly improved, but also much better visual quality is achieved. 相似文献
Landscapes are complex systems composed of a large number of heterogeneous components as well as explicit homogeneous regions that have similar spectral character on high‐resolution remote sensing imagery. The multiscale analysis method is considered an effective way to study the remotely sensed images of complex landscape systems. However, there remain some difficulties in identifying perfect image‐objects that tally with the actual ground‐object figures from their hierarchical presentation results. Therefore, to overcome the shortcomings in applications of multiresolution segmentation, some concepts and a four‐step approach are introduced for homogeneous image‐object detection. The spectral mean distance and standard deviation of neighbouring object candidates are used to distinguish between two adjacent candidates in one segmentation. The distinguishing value is used in composing the distinctive feature curve (DFC) with object candidate evolution in a multiresolution segmentation procedure. The scale order of pixels is built up by calculating a series of conditional relative extrema of each curve based on the class separability measure. This is helpful in determining the various optimal scales for diverse ground‐objects in image segmentation and the potential meaningful image‐objects fitting the intrinsic scale of the dominant landscape objects. Finally, the feasibility is analysed on the assumption that the homogeneous regions obey a Gaussian distribution. Satisfactory results were obtained in applications to high‐resolution remote sensing imageries of anthropo‐directed areas. 相似文献