首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   11篇
电工技术   1篇
化学工业   32篇
金属工艺   2篇
机械仪表   3篇
建筑科学   3篇
矿业工程   7篇
能源动力   19篇
轻工业   5篇
无线电   4篇
一般工业技术   12篇
冶金工业   3篇
原子能技术   53篇
自动化技术   9篇
  2023年   4篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   15篇
  2017年   10篇
  2016年   16篇
  2015年   19篇
  2014年   12篇
  2013年   16篇
  2012年   5篇
  2011年   5篇
  2010年   21篇
  2009年   11篇
  2008年   2篇
  2006年   2篇
  1998年   3篇
排序方式: 共有153条查询结果,搜索用时 312 毫秒
151.
Wide-bandgap perovskite solar cells (WBG-PSCs), when partnered with Si bottom cells in tandem configuration, can provide efficiencies up to 44%; yet, the development of stable, efficient, and scalable WBG-PSCs is required. Here, the utility of the hybrid evaporation-solution method (HESM) is investigated to meet these demanding requirements via its unique advantages including ease of control and reproducibility. A PbI2/CsBr layer is co-evaporated followed by coating of organic-halide solutions in a green solvent. Bandgaps between 1.55–1.67 eV are systematically screened by varying CsBr and MABr content. Champion efficiencies of 21.06% and 20.35% in cells and 19.83% and 18.73% in mini-modules (16 cm2) for perovskites with 1.64 and 1.67 eV bandgaps are achieved, respectively. Additionally, 18.51%-efficient semi-transparent WBG-PSCs are implemented in 4T perovskite/bifacial silicon configuration, reaching a projected power output of 30.61 mW cm−2 based on PD IEC TS 60904-1-2 (BiFi200) protocol. Despite similar bandgaps achieved by incorporating Br via MABr solution and/or CsBr evaporation, PSCs having a perovskite layer without MABr addition show significantly higher thermal and moisture stability. This study proves scalable, high-performance, and stable WBG-PSCs are enabled by HESM, hence their use in tandems and in emerging applications such as indoor photovoltaics are now within reach.  相似文献   
152.
This investigation aims to assess the mechanical behavior and energy absorption properties of the Cu lattice structures made by investment casting method experimentally and by finite element method (FEM) simulation. The casting pattern of lattice structures is additively manufactured with 2.0, 2.5, and 3.0 mm diameters and the lattice structures produced by investment casting of Cu. Then a uniaxial compression test is applied to measure maximum compressive strength, energy absorption density, efficiency, and specific energy absorption. The simulation and the experimental results indicate that the abovementioned properties of the lattice structures have a significant improvement and properties developments will rise by increasing the diameter of the struts. The mechanical characterization has done for Cu lattice structure with 3.0 mm strut diameter, which endures a stress of 242 MPa at the densification strain and the maximum tolerated stress of 404 MPa. The energy absorption density of this lattice structure is 67 MJ m−3 and has a specific energy absorption of 28 J g−1 followed by an energy absorption efficiency around 70%. The simulation result shows a mathematical connection between the unit cells and the final lattice structures in terms of maximum tolerated stresses, which can help the prediction of the mechanical behavior of these structures.  相似文献   
153.
Bozorgi  S. Amir  Orouji  Ali A.  Abbasi  Abdollah 《SILICON》2022,14(11):5905-5912
Silicon - In this paper, a SOI MOSFET is proposed using a P-N structure and an electrically hole-free region (EHFR-SOI). In this structure, to improve the electrical characteristics such as short...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号