首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3460篇
  免费   296篇
  国内免费   13篇
电工技术   54篇
综合类   1篇
化学工业   1014篇
金属工艺   91篇
机械仪表   165篇
建筑科学   38篇
矿业工程   2篇
能源动力   125篇
轻工业   259篇
水利工程   8篇
石油天然气   1篇
无线电   638篇
一般工业技术   801篇
冶金工业   248篇
原子能技术   51篇
自动化技术   273篇
  2024年   6篇
  2023年   49篇
  2022年   82篇
  2021年   112篇
  2020年   80篇
  2019年   111篇
  2018年   119篇
  2017年   117篇
  2016年   145篇
  2015年   104篇
  2014年   152篇
  2013年   232篇
  2012年   200篇
  2011年   296篇
  2010年   170篇
  2009年   198篇
  2008年   196篇
  2007年   152篇
  2006年   156篇
  2005年   96篇
  2004年   88篇
  2003年   110篇
  2002年   103篇
  2001年   71篇
  2000年   80篇
  1999年   65篇
  1998年   93篇
  1997年   80篇
  1996年   57篇
  1995年   34篇
  1994年   25篇
  1993年   30篇
  1992年   18篇
  1991年   13篇
  1990年   10篇
  1989年   18篇
  1988年   15篇
  1987年   9篇
  1986年   6篇
  1985年   13篇
  1984年   7篇
  1983年   3篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1977年   7篇
  1976年   10篇
  1974年   8篇
  1973年   3篇
  1971年   2篇
排序方式: 共有3769条查询结果,搜索用时 15 毫秒
11.
12.
Manganese oxide nanocrystals are combined with aluminum oxide nanocrystals to improve their crystallinity via calcination without a significant increase of crystal size. A nanocomposite, consisting of two metal oxides, can be synthesized by the reaction between permanganate anions and aluminum oxyhydroxide keggin cations. The as‐prepared manganese oxide–aluminum oxide nanocomposite is X‐ray amorphous whereas heat‐treatment gives rise to the crystallization of an α‐MnO2 phase at 600 °C and Mn3O4/Mn2O3 and γ‐Al2O3 phases at 800 °C. Electron microscopy and N2 adsorption‐desorption‐isotherm analysis clearly demonstrate that the as‐prepared nanocomposite is composed of a porous assembly of monodisperse primary particles with a size of ~20 nm and a surface area of >410 m2 g?1. Of particular interest is that the small particle size of the as‐prepared nanocomposite is well‐maintained up to 600 °C, a result of the prevention of the growth of manganate grains through nanoscale mixing with alumina grains. The calcined nanocomposite shows very‐high catalytic activity for the oxidation of cyclohexene with an extremely high conversion efficiency of >95% within 15 min. The present results show that the improvement of the crystallinity without significant crystal growth is very crucial for optimizing the catalytic activity of manganese oxide nanocrystals.  相似文献   
13.
We present a novel principle for 1/f noise reduction in linear analog CMOS ICs. The principle is experimentally demonstrated for a two-stage CMOS Miller operational amplifier in a standard 0.12-mum, 1.5-V digital CMOS technology. A threefold 1/f noise reduction (5 dB) is achieved at 10 Hz compared with a reference circuit. The impact of the principle on the circuit performance is investigated  相似文献   
14.
15.
Upconversion nanoparticles (UCNPs) have been integrated with photonic platforms to overcome the intrinsically low quantum efficiency limit of upconversion luminescence (UCL). However, platforms based on thin films lack transferability and flexibility, which hinders their broader and more practical application. A plasmonic structure is developed that works as a multi‐functional platform for flexible, transparent, and washable near‐infrared (NIR)‐to‐visible UCL films with ultra‐strong UCL intensity. The platform consists of dielectric microbeads decorated with plasmonic metal nanoparticles on an insulator/metal substrate. Distinct improvements in NIR confinement, visible light extraction, and boosted plasmonic effects for upconversion are observed. With weak NIR excitation, the UCL intensity is higher by three orders of magnitude relative to the reference platform. When the microbeads are organized in a square lattice array, the functionality of the platform can be expanded to wearable and washable UCL films. The platform can be transferred to transparent, flexible, and foldable films and still emit strong UCL with a wide viewing angle.  相似文献   
16.
The synthesis of large‐area TiS2 thin films is reported at temperatures as low as 500 °C using a scalable two‐step method of metal film deposition followed by sulfurization in an H2S gas furnace. It is demonstrated that the lowest‐achievable sulfurization temperature depends strongly on the oxygen background during sulfurization. This dependence arises because Ti? O bonds present a substantial kinetic and thermodynamic barrier to TiS2 formation. Lowering the sulfurization temperature is important to make smooth films, and to enable integration of TiS2 and related transition metal dichalcogenides—including metastable phases and alloys—into device technology.  相似文献   
17.
Mechanistic links have been suggested between repolarization alternans (RPA) and the onset of ventricular tachycardia (VT) and/or fibrillation. Endocardial detection of RPA may, therefore, be an important step in future device-based treatments of arrhythmias. Here, we investigate if RPA could be detected during acute ischemia using an implantable cardioverter defibrillator (ICD) lead (tip to distal coil) located in the right ventricular apex. In 18 pigs, the right coronary (n = 10) or left anterior descending coronary (n = 8) artery was occluded for 10 min using a balloon catheter, followed by reperfusion for 30 min, and re-occlusion for 30 min. RPA magnitude, computed using the modified moving average (MMA) method, showed a sharp increase in all 18 animals, from a mean baseline level of 1.9 +/- 1.3 mV to 3.0 +/- 1.3 mV during first occlusion (p < 0.001). RPA magnitude showed a prominent increase in 10 animals during re-occlusion, from a mean baseline level of 1.7 +/- 1.0 mV to 3.3 +/- 1.5 mV (p < 0.001). The protocol was terminated during the first two stages of occlusion and reperfusion for the remaining 8 animals due to the occurrence of ventricular fibrillation (VF). These results confirm that RPA increases under ischemic conditions and that it is possible to detect and track RPA dynamics with an ICD lead that is positioned in a clinically realistic location. Such an approach may be useful in formulating improved arrhythmia detection and control algorithms.  相似文献   
18.
Dynamic spectrum management for next-generation DSL systems   总被引:1,自引:0,他引:1  
The performance of DSL systems is severely constrained by crosstalk due to the electromagnetic coupling among the multiple twisted pairs making up a phone cable. In order to reduce performance loss arising from crosstalk, DSL systems are currently designed under the assumption of worst-case crosstalk scenarios leading to overly conservative DSL deployments. This article presents a new paradigm for DSL system design, which takes into account the multi-user aspects of the DSL transmission environment. Dynamic spectrum management (DSM) departs from the current design philosophy by enabling transceivers to autonomously and dynamically optimize their communication settings with respect to both the channel and the transmissions of neighboring systems. Along with this distributed optimization, when an additional degree of coordination becomes available for future DSL deployment, DSM will allow even greater improvement in DSL performance. Implementations are readily applicable without causing any performance degradation to the existing DSLs under static spectrum management. After providing an overview of the DSM concept, this article reviews two practical DSM methods: iterative water-filling, an autonomous distributed power control method enabling great improvement in performance, which can be implemented through software options in some existing ADSL and VDSL systems; and vectored-DMT, a coordinated transmission/reception technique achieving crosstalk-free communication for DSL systems, which brings within reach the dream of providing universal Internet access at speeds close to 100 Mb/s to 500 m on 1-2 lines and beyond 1 km on 2-4 lines. DSM-capable DSL thus enables the broadband age.  相似文献   
19.
Efficient encapsulation and sustained release of small hydrophilic molecules from traditional hydrogel systems are challenging due to the large mesh size of 3D networks and high water content. Furthermore, the encapsulated molecules are prone to early release from the hydrogel prior to use, resulting in a short shelf life of the formulation. Here, a hydration-induced void-containing hydrogel (HVH) based on hyperbranched polyglycerol-poly(propylene oxide)-hyperbranched polyglycerol (HPG-PPG-HPG) as a robust and efficient delivery system is presented for small hydrophilic molecules. Specifically, after the HPG-PPG-HPG is incubated overnight at 4 °C in the drug solution, it is hydrated into a hydrogel containing micron-sized voids, which can encapsulate hydrophilic drugs and achieve 100% drug encapsulation efficiency. In addition, the voids are surrounded by a densely packed polymer matrix, which restricts drug transport to achieve sustained drug release. The hydrogel/drug formulation can be stored for several months without changing the drug encapsulation and release properties. HVH hydrogels are injectable due to shear thinning properties. In rats, a single injection of the HPG-PPG-HPG hydrogel containing 8 µg of tetrodotoxin (TTX) produces sciatic nerve block lasting up to 10 h without any TTX-related systemic toxicity nor local toxicity to nerves and muscles.  相似文献   
20.
An iodine‐free solid‐state dye‐sensitized solar cell (ssDSSC) is reported here, with 6.8% energy conversion efficiency—one of the highest yet reported for N719 dye—as a result of enhanced light harvesting from the increased transmittance of an organized mesoporous TiO2 interfacial layer and the good hole conductivity of the solid‐state‐polymerized material. The organized mesoporous TiO2 (OM‐TiO2) interfacial layer is prepared on large‐area substrates by a sol‐gel process, and is confirmed by scanning electron microscopy (SEM) and grazing incidence small‐angle X‐ray scattering (GISAXS). A 550‐nm‐thick OM‐TiO2 film coated on fluorine‐doped tin oxide (FTO) glass is highly transparent, resulting in transmittance increases of 8 and 4% compared to those of the bare FTO and conventional compact TiO2 film on FTO, respectively. The high cell performance is achieved through careful control of the electrode/hole transport material (HTM) and nanocrystalline TiO2/conductive glass interfaces, which affect the interfacial resistance of the cell. Furthermore, the transparent OM‐TiO2 film, with its high porosity and good connectivity, exhibits improved cell performance due to increased transmittance in the visible light region, decreased interfacial resistance ( Ω ), and enhanced electron lifetime ( τ ). The cell performance also depends on the conductivity of HTMs, which indicates that both highly conductive HTM and the transparent OM‐TiO2 film interface are crucial for obtaining high‐energy conversion efficiencies in I2‐free ssDSSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号