首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2216篇
  免费   192篇
  国内免费   19篇
电工技术   43篇
综合类   9篇
化学工业   648篇
金属工艺   76篇
机械仪表   115篇
建筑科学   94篇
矿业工程   6篇
能源动力   141篇
轻工业   288篇
水利工程   60篇
石油天然气   27篇
无线电   196篇
一般工业技术   349篇
冶金工业   47篇
原子能技术   17篇
自动化技术   311篇
  2024年   11篇
  2023年   46篇
  2022年   80篇
  2021年   180篇
  2020年   157篇
  2019年   180篇
  2018年   211篇
  2017年   194篇
  2016年   204篇
  2015年   106篇
  2014年   177篇
  2013年   260篇
  2012年   160篇
  2011年   153篇
  2010年   91篇
  2009年   76篇
  2008年   47篇
  2007年   18篇
  2006年   20篇
  2005年   11篇
  2004年   14篇
  2003年   6篇
  2002年   5篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1980年   1篇
  1974年   1篇
排序方式: 共有2427条查询结果,搜索用时 31 毫秒
81.
Chitosan (CS) and hydrophobic‐modified chitosan (HM‐CS) chains were wrapped onto multiwalled carbon nanotubes (MWNTs) and introduced to polyvinyl alcohol (PVA) matrices as nanohybrid conductive polymer composites (CPCs) for detection of polar vapors. The effect of grafted alkyl groups on polarity of CS chains were studied by quantum mechanics (QM). The designed composites were applied as sensitive layers to clarify the response mechanism in CPCs gas sensors. It was realized that the wrapped biopolymers intensely influenced the sensitivity of the composites. Experiment results specified that the nature of biomacromolecules and their interactions with vapor molecules affects the resistance change in CPCs. The higher interaction of CS with polar vapor molecules caused more plasticization of polymer segments in the MWNTs connections. Such phenomenon enhanced the resistance change in the presence of analytes. Moreover, it was inferred that the semiconductor character of MWNTs has an important effect in the final signals. The more polar structure of CS in comparison with HM‐CS enhanced the adsorption of vapor molecules on the surface of MWNTs, and the electron donor analytes decreased the conductivity of p‐type MWNTs increasing the final responses. The presented results corroborate that the performance of CPCs gas sensors could be finely tuned through manipulation of the nanointerfaces. POLYM. COMPOS., 37:2803–2810, 2016. © 2015 Society of Plastics Engineers  相似文献   
82.
Based on the coacervation principle a solvent/non-solvent method has been used for microencapsulation of sodium azide (NaN3) with fibrous nitrocellulose (NC). Scanning electron microscopy (SEM) was employed to examine the coating morphology. The thermal behavior of solid samples has been studied by means of thermogravimetry (TG) and differential scanning calorimetry (DSC). The results of TG–DTA analysis revealed that the main thermal degradation for the pure NC and NaN3 occurs in the temperature ranges of 192–220 and 415–420 °C, respectively. The effects of some parameters, such as NC to NaN3 weight ratio and volume and addition time of non-solvent, on coating quality and thermal properties have been investigated by SEM and thermal methods. The results of these experiments showed that the decomposition temperature of most stabilized coated sodium azide is about 50 °C higher than that of the pure sample. The DSC experiments were conducted to study the influence of the heating rate (5, 10, 15 and 20 °C/min) on the thermal decomposition processes of the pure NC, coated and pure NaN3 samples. The results revealed that, as the heating rate was increased, decomposition temperature of the compounds was increased. Also, the kinetic parameters such as activation energy and frequency factor of the decomposition processes were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Our finding showed that coated NaN3 has lower decomposition rate with respect to the pure one.  相似文献   
83.
84.
In this study, the impact of TiN as a sintering aid on the relative density and microstructure of TiB2 ceramic was investigated. Monolithic TiB2 and TiB2 doped with 5?wt% TiN were sintered at 1900?°C for 7?min dwell time under the pressure of 40?MPa by spark plasma. The addition of TiN affected the microstructure of TiB2-based sample considerably depicting the finer grains in the as-sintered ceramic. X-ray diffraction evaluation indicated that no interaction occurred between the initial materials. However, detail investigation by the map analysis and energy dispersive spectroscopy results revealed the formation of in-situ nano-sized hBN secondary phase in the TiN-doped TiB2. In addition, TiN played a remarkable role on increasing the relative density of TiN-doped TiB2 ceramic producing a nearly fully dense ceramic with relative density of 99.9% in comparison with the monolithic ceramic having 96.7% relative density.  相似文献   
85.
Thermally stable thermoplastic elastomer nanocomposites based on polyamide 6 (PA6), acrylonitrile butadiene rubber (NBR), and halloysite nanotubes (HNTs) were dynamically vulcanized, and their nonisothermal decomposition kinetics were examined. The Friedman, Kissinger–Akahira–Sunose (KAS), Ozawa–Wall–Flynn (FWO), and modified Coats–Redfern (m-CR) isoconversional models were used to obtain information about the kinetics of the thermal decomposition of PA6–NBR–HNTs in terms of the activation energy per partial mass loss monitored through thermogravimetric analyses performed at different heating rates. An erratic trend was due to the Friedman model, especially for systems having higher HNT loadings, whereas the KAS, FWO, and m-CR models revealed very similar meaningful thermal decomposition kinetics. A relatively high activation energy corroborating a reliable thermal stability was obtained by the addition of HNTs to PA6–NBR, and the resistance against decomposition was higher for systems containing more HNT. This signified the role of the HNTs as thermal stability modifiers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47483.  相似文献   
86.
Possessing unique designs and properties absent in conventional materials, nanocomposites have made a remarkable imprint in science and technology. This is particularly true regarding the polymer matrix composites when they are further reinforced with nanoparticles. In this study, the effects of different weight percentages (0, 0.1, 0.2, 0.3, 0.4, and 0.5) of surface-modified graphene nanoplatelets (GNPs) on the microhardness and wear properties of basalt fibers/epoxy composites were investigated. The GNPs were surface modified by silane, and the composites were made by the hand lay-up method. The wear tests were conducted under two different loads of 20 and 40 N. The best wear properties were achieved at 0.3 wt % GNPs as a result of the GNPs' self-lubrication property and the formation of a stable transfer/lubricating film at the pin and disk interface. Moreover, the friction coefficient was lower at the higher normal load of 40 N. The microscopic studies by FESEM and SEM showed that the presence of GNPs up to 0.3 wt % led to the stability of the transfer/lubricating film by enhancing the adhesion of the basalt fibers to the epoxy resin. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47986.  相似文献   
87.
Thermochromic VO2 thin films were deposited on soda-lime glass via sol-gel method. Doping was done through adding tungstic acid solution to the vanadium solution precursor. Grazing incidence x-ray diffractometer (GIXRD) results showed that VO2 and V6O13 phases were formed together in the heat-treated sample. According to the GIXRD result of the W-doped sample, only VO2 remained. Field-emission scanning electron microscopy (FESEM) micrographs showed that the VO2 grain size decreased from about 70 to about 25 nm for undoped film and 2 wt% W-doped films, respectively. Atomic force microscopy (AFM) results showed that the root mean square roughness for the film with 180 nm thickness was about 18 nm, and 2 wt% W-doped film had a smoother surface. Diffuse reflectance spectroscopy (DRS) results showed that the band gap energy for undoped, 1 wt% W- doped, and 2 wt% W-doped VO2 thin films was 1.7, 1.3, and 0 eV, respectively. Four-point probe resistivity measurements showed a significant decrement, from approximately 1 MΩ at 15°C to <100 Ω at 80°C. Regarding Vis-NIR spectroscopy results, maximum optical transmission for undoped and W-doped films was approximately 75% and 35%, respectively.  相似文献   
88.
This paper deals with influence of chitosan nanoparticles (CNPs) loaded by tetracycline, as a drug, on the physico-mechanical and antibacterial properties as well as drug release behavior of poly(vinyl alcohol), PVA, hydrogels prepared by electron beam irradiation. The formation of spherical chitosan particles in nanoscale size prepared by an ionic gelation method was confirmed by FTIR and UV spectroscopy, and scanning electron microscopy analyses. The drug release kinetic studies from drug loaded chitosan nanoparticles (DLCNPs) at pH = 7.4 revealed a linear and steady release behavior over long period of time. The theoretical analysis of the swelling kinetic data, using Peppas’s model showed that the swelling kinetic is governed by Fickian diffusion for all the prepared hydrogels, however, the water diffusion coefficient, and therefore, the swelling content were lower for the hydrogels loaded with DLCNPs as compared to the ones with the neat drug. In agreement with these results, the hydrogels containing DLCNPs exhibited a more controlled drug release behavior with significantly stronger antibacterial activity. The tensile mechanical properties of the hydrogels not affected by the DLCNPs were found to be suitable for wound dressing applications.  相似文献   
89.
Laminar mixed convection of a nanofluid consisting of water and Al2O3 in an inclined tube with heating at the top half surface of a copper tube has been studied numerically. The bottom half of the tube wall is assumed to be adiabatic (presenting a tube of a solar collector). Heat conduction mechanism through the tube wall is considered. Three-dimensional governing equations with using two-phase mixture model have been solved to investigate hydrodynamic and thermal behaviours of the nanofluid over wide range of nanoparticle volume fractions. For a given nanoparticle mean diameter the effects of nanoparticle volume fractions on the hydrodynamics and thermal parameters are presented and discussed at different Richardson numbers and different tube inclinations. Significant augmentation on the heat transfer coefficient as well as on the wall shear stress is seen.  相似文献   
90.
Response surface methodology (RSM) using D-optimal design was applied to optimization of photocatalytic degradation of phenol by new composite nano-catalyst (TiO2/Perlite). Effects of seven factors (initial pH, initial phenol concentration, reaction temperature, UV irradiation time, UV light intensity, catalyst calcination temperature, and dosage of TiO2/perlite) on phenol conversion efficiency were studied and optimized by using the statistical software MODDE 8.02. On statistical analysis of the results from the experimental studies, the optimum process conditions were as follows: initial pH, 10.7; initial phenol concentration, 0.5 mM; reaction temperature, 27 °C; UV irradiation time, 6.5 h; UV light intensity, 250 W; catalyst calcination temperature, 600 °C; and TiO2/perlite dosage, 6 g/L. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 91.8%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号