全文获取类型
收费全文 | 493篇 |
免费 | 29篇 |
专业分类
电工技术 | 3篇 |
化学工业 | 138篇 |
金属工艺 | 28篇 |
机械仪表 | 16篇 |
建筑科学 | 4篇 |
矿业工程 | 1篇 |
能源动力 | 17篇 |
轻工业 | 18篇 |
水利工程 | 1篇 |
石油天然气 | 2篇 |
无线电 | 46篇 |
一般工业技术 | 158篇 |
冶金工业 | 28篇 |
原子能技术 | 1篇 |
自动化技术 | 61篇 |
出版年
2024年 | 2篇 |
2023年 | 18篇 |
2022年 | 14篇 |
2021年 | 18篇 |
2020年 | 19篇 |
2019年 | 16篇 |
2018年 | 27篇 |
2017年 | 28篇 |
2016年 | 23篇 |
2015年 | 18篇 |
2014年 | 27篇 |
2013年 | 31篇 |
2012年 | 25篇 |
2011年 | 26篇 |
2010年 | 21篇 |
2009年 | 21篇 |
2008年 | 21篇 |
2007年 | 20篇 |
2006年 | 24篇 |
2005年 | 17篇 |
2004年 | 12篇 |
2003年 | 10篇 |
2002年 | 8篇 |
2001年 | 7篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 7篇 |
1997年 | 6篇 |
1996年 | 5篇 |
1995年 | 5篇 |
1994年 | 5篇 |
1993年 | 3篇 |
1992年 | 7篇 |
1991年 | 1篇 |
1990年 | 4篇 |
1989年 | 3篇 |
1988年 | 2篇 |
1987年 | 4篇 |
1986年 | 4篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 1篇 |
排序方式: 共有522条查询结果,搜索用时 15 毫秒
11.
描述了纤维横截面形状对涤棉和涤粘环锭纱织物及喷气纱织物的影响.纱线结构在影响衣服舒适性的众多因素中扮演着重要角色.事实证明用喷气纱制成的面料在透气性、透湿性和吸湿性方面优于环锭纱面料.非圆形截面的涤纶纤维制成的面料具有较好的透气性、导湿性、吸湿性、绝热性和芯吸性.除了绝热性能外涤粘混纺面料的其他各项性能均比涤棉混纺面料好. 相似文献
12.
Monoj Pramanik Suneel Kumar Srivastava Biswas Kumar Samantaray Anil Kumar Bhowmick 《应用聚合物科学杂志》2003,87(14):2216-2220
Ethylene vinyl acetate rubber (45% vinyl acetate content, EVA‐45) and organomodified clay (12Me‐MMT) composites were prepared by solution blending of the rubber and the clay. A combination of X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy studies showed that the composites obtained are on the nanometer scale. The measurements of the dynamic mechanical properties for different compositions over a temperature range (?100 to +100°C) showed that the storage moduli of these rubber–clay nanocomposites are higher above the glass to rubber transition temperature compared to the neat rubber. The tensile strength of the nanocomposites is about 1.6 times higher than that of the EVA‐45. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2216–2220, 2003 相似文献
13.
Polyacrylonitrile solution homogeneity study by dynamic shear rheology and the effect on the carbon fiber tensile strength 下载免费PDF全文
Bradley A. Newcomb Prabhakar V. Gulgunje Yaodong Liu Kishor Gupta Manjeshwar G. Kamath Chandrani Pramanik Sushanta Ghoshal Han Gi Chae Satish Kumar 《Polymer Engineering and Science》2016,56(3):361-370
Poly(acrylonitrile‐co‐methacrylic acid) (PAN‐co‐MAA)/N,N‐dimethylformamide (DMF) solutions were prepared and dynamic shear rheology of these solutions were investigated. With increasing stirring time up to 72 h at 70°C, the polymer solution became less elastic (more liquid‐like) with a ~60% reduction in the zero‐shear viscosity. Relaxation spectra of the PAN‐co‐MAA/DMF solutions yield a decrease in relaxation time (disentanglement time, τd), corresponding to an about 8% decrease in viscosity average molecular weight. The log‐log plot of G′ (storage modulus) versus G″ (loss modulus) exhibited an increase in slope as a function of stirring time, suggesting that the molecular level solution homogeneity increased. In order to study the effect of solution homogeneity on the resulting carbon fiber tensile strength, multiple PAN‐co‐MAA/DMF solutions were prepared, and the precursor fibers were processed using gel‐spinning, followed by continuous stabilization and carbonization. The rheological properties of each solution were also measured and correlated with the tensile strength values of the carbon fibers. It was observed that with increasing the slope of the G′ versus G″ log‐log plot from 1.471 to 1.552, and reducing interfilament fiber friction during precursor fiber drawing through the addition of a fiber washing step prior to fiber drawing, the carbon fiber strength was improved (from 3.7 to 5.8 GPa). This suggests that along with precursor fiber manufacturing and carbonization, the solution homogeneity is also very important to obtain high strength carbon fiber. POLYM. ENG. SCI., 56:361–370, 2016. © 2016 Society of Plastics Engineers 相似文献
14.
Kai-Hsiang Liang Karan Kumar Gupta Chung-Hsin Lu Sudipta Som 《Journal of the American Ceramic Society》2022,105(10):6168-6174
SnO2-coated TiNb2O7 powders were synthesized via the solution coating method in the present research. The SnO2 layers with a thickness of 3–5 nm were homogeneously coated on the surface of TiNb2O7 particles. TiNb2O7 coated with SnO2 of 5 mol% with high Li+ diffusion coefficient delivered the discharge capacity of 319.5 mAh/g, which was 6.6% higher than that of the non-coated samples. The enhancement of capacity for the coated TiNb2O7 was owing to the low charge-transfer resistance of 17.5 Ω in contrary to the non-coated TiNb2O7 (27.8 Ω). SnO2-coated TiNb2O7 possessed an improved capacity retention of 85.2% at 5 C after 100 cycles, superior to the non-coated TiNb2O7 (79.8%). On the other hand, the excessive amounts of SnO2 coating led to the reduction in the capacity of the prepared samples. The excessive amounts of SnO2 layers suppressed the Li+ diffusion and increased the charge-transfer resistance. The obtained results in this study indicated that coating of TiNb2O7 with appropriate amounts of SnO2 significantly improved the electrochemical performance of TiNb2O7. 相似文献
15.
Sudipta Choudhury Deepak Deepak Gourav Bhattacharya James McLaughlign Susanta Sinha Roy 《大分子材料与工程》2023,308(8):2300007
Wearable pH sensors for sweat analysis have garnered significant scientific attention for the detection of early signs of many physiological diseases. In this study, a MoS2-polyaniline (PANI) modified screen-printed carbon electrode (SPCE) is fabricated and used as a sweat biosensor. The exfoliated MoS2 nanosheets are drop casted over an SPCE and are functionalized by a conducting polymer, polyaniline (PANI) via the electropolymerization technique. The as-fabricated biosensor exhibits high super-Nernstian sensitivity of −70.4 ± 1.7 mV pH−1 in the linear range of pH 4 to 8 of 0.1 m standard phosphate buffer solution (PBS), with outstanding reproducibility. The sensor exhibits excellent selectivity against the common sweat ions including Na+, Cl−, K+, and NH4+ with tremendous long-term stability over 180 min from pH 4 to 6. The enhanced active surface area and better electrical conductivity as a consequence of the synergistic effect between MoS2 and PANI are correlated with the boosted performance of the as-produced biosensor. The feasibility of the sensor is further examined using an artificial sweat specimen and the successful detection confirms the potential of the biosensor for a real-time noninvasive, skin attachable, and flexible wearable pH sensor. 相似文献
16.
Jordan M. Anderson Jigna Patel Ajay S. Karakoti Nathan Greeneltch Diego J. Díaz Sudipta Seal 《Electrochimica acta》2011,56(5):2541
Nanocrystalline Pt/CeO2 composite electrodes were fabricated to study the electrochemical oxidation of methanol and ethanol. The performance of the electrodes was tested as the ceria solutions aged over time. It was observed that the performance oscillated with time, suggesting that the catalytic behavior towards alcohol oxidation was greatly dependent on the aging of the particles. These results point to a great dependence of the catalytic effect on the redox state of the ceria particles. 相似文献
17.
N. K. Pramanik R. S. Haldar Y. K. Bhardwaj S. Sabharwal U. K. Niyogi R. K. Khandal 《应用聚合物科学杂志》2011,122(1):193-202
Nylon 66 has been transformed into a material with significantly improved properties like hardness, tensile strength, and flexural modulus by processing it under the optimized dose rate of electron beam in the presence of suitable crosslinkers. Furthermore, percent water absorption of nylon 66 was reduced substantially on irradiation. Thermogravimetric analysis revealed that thermal stability of nylon 66 improved with increasing dose of radiation. Improvement of mechanical and thermal properties and reduction of water absorption of nylon 66 were due to the crosslinking of polyamide molecules made possible by the high energy radiation. Increase of crosslinking with increasing radiation dose was verified by the increase of gel content at higher doses. Differential scanning calorimetry showed that both melting and crystallization temperatures along with percent crystallinity of nylon 66 were decreased with the increasing dose of radiation leading to the development of more amorphous character in this semicrystalline polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011. 相似文献
18.
Ranjan Bhattacharyya T. K. Das P. Pramanik V. Ganeshan A. A. Saad A. R. Sharma 《Nutrient Cycling in Agroecosystems》2013,96(2-3):185-202
We evaluated impacts of conservation agriculture (zero tillage, bed planting and residue retention) on changes in total soil N (TSN) and aggregate-associated N storage in a sandy loam soil of the Indo-Gangetic Plains. Cotton (Gossypium hirsutum) and wheat (Triticum aestivum) crops were grown during the first 3 years (2008–2011) and in the last year, maize (Zea mays) and wheat were cultivated. Results indicate that after 4 years the plots under zero tillage with bed planting (ZT-B) and zero tillage with flat planting (ZT-F) had 15 % higher TSN concentrations than conventional tillage and bed planting plots (CT-B) (0.63 g kg?1 soil) in the 0–5 cm soil layer. CT-B plots had lower soil bulk density that ZT plots in that layer. Plots under ZT-B (0.57 Mg ha?1) contained 20 % higher TSN stock in the 0–5 cm soil layer than CT-B plots (0.48 Mg ha?1). However, tillage had no impact on TSN concentration or stock in the sub-surface (5–15 and 15–30 cm) soil layers. Thus, in the 0–30 cm soil layer, ZT-B plots contained 6 and 5 % higher (P > 0.05) TSN stock compared with CT-B (2.15 Mg N ha?1) and CT-F (2.19 Mg N ha?1) plots respectively after 4 years. Plots that received cotton/maize + wheat residue (C/M + W RES) contained 16 % higher TSN concentration than plots with residues removed (N RES; 0.62 g kg?1 soil) in the surface (0–5 cm) layer. Plots with only cotton/maize residue (C/M RES) or only wheat residue (W RES) retention/incorporation had similar TSN concentrations and stocks in the subsurface layer. Plots under ZT-B also had more macroaggregates (0.25–8 mm) and greater mean weight diameter with lower silt + clay sized particles than CT-B plots in that layer. A greater proportion of large macroaggregates (2–8 mm) in the plots under C/M + W RES compared with N RES were observed. In the 5–15 cm soil layer ZT-B and C/M + W RES treated plots had more macroaggregates and greater mean weight diameter than CT-B and N RES treated plots, respectively. Because of the greater amount of large aggregates, plots under ZT-B and C/M + W RES had 49 and 35 % higher large macroaggregate-associated N stocks than CT-B (38 kg TSN ha?1) and N RES (40 kg TSN ha?1) plots, respectively, in the 0–5 cm soil layer, although aggregates had similar TSN concentrations in all plots. Both tillage and residue retention had greater effects on aggregate-associated N stocks in the 5–15 cm layers. In addition to N content within large macroaggregates, small macroaggregate-associated N contents were also positively affected by ZT-B and C/M + W RES. Tillage and residue retention interaction effects were not significant for all parameters. Thus, the adoption of ZT in permanent beds with crop residue addition is a better management option for improvement of soil N (and thus possibly a reduced dose of fertilizer N can be adopted in the long run), as the management practice has the potential to improve soil aggregation with greater accumulation of TSN within macroaggregates, and this trend would likely have additive effects with advancing years of the same management practices in this region. 相似文献
19.
A biodegradable poly(ester amide) resin was synthesized from N,N-bis(2-hydroxy ethyl) fatty amide of castor oil with maleic anhydride, phthalic anhydride and isophthalic acid (100:30:35:35 mole ratio) by the polycondensation process. The fatty amide of the oil was obtained for the first time with 95% yield. The chemical structure of the synthesized resin was characterized by spectroscopic techniques like FTIR, 1H NMR and 13C NMR. Various physical properties such as acid value, saponification value, iodine value, specific gravity and viscosity of the resin were also determined. Further the rheological behavior, studied in the steady shear mode showed shear thinning behavior of the resin. The epoxy cured poly(ester amide) thermoset using poly(amido amine) hardener exhibited better properties than with the cycloaliphatic amine hardener cured system. TGA studies also revealed higher thermal stability of the former system than the latter. In vitro-biodegradation study of the poly(ester amide) thermoset using Pseudomonas aeruginosa and Bacillus subtilus bacteria revealed superior biodegradability of the thermoset using the former bacterial strain. Excellent chemical resistance against various chemical media including alkali was observed for epoxy-poly(amido amine) cured poly(ester amide) resin over epoxy-cycloaliphatic amine one. The epoxy-poly(amido amine) cured poly(ester amide) thermoset thus has the potential to be used as surface coating material. 相似文献
20.
High-performance Kevlar fiber had extensively been explored to upgraded mechanical properties of the advanced composites. Therefore, this study aimed a challenging work to grow carbon nanofibers onto the Kevlar fiber to improve its fiber-matrix interaction properties. It was successfully done through inexpensive flame deposition as well as modification of matrix with hybrid resin using polyurethane-epoxy mixture. A hand-layup method had been adopted to manufacture the composite laminates. The chemical and surface structures of the prepared laminae were examined by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, and the composite's properties were evaluated tensile test, compact tension (CT) fracture test, fractography, and differential scanning calorimetry. The surface modified Kevlar laminae with CNF were used as reinforcing layer in the epoxy and PU/epoxy hybrid resin matrices. CNF-coated heated Kevlar reinforced laminated PU/epoxy hybrid composites (CNF-Kev/PU-Epoxy) showed highest elongation 47% and fracture toughness (11.7 MPa√m) along with good UTS 139 MPa. Therefore, these hybrid nanocomposites developed by simple inexpensive method would be the potential candidates for several advanced applications particularly in defense, automobile, aerospace, and spacecraft applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48802. 相似文献