首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1418篇
  免费   21篇
  国内免费   4篇
电工技术   53篇
化学工业   233篇
金属工艺   33篇
机械仪表   13篇
建筑科学   16篇
能源动力   27篇
轻工业   119篇
水利工程   3篇
石油天然气   2篇
无线电   190篇
一般工业技术   218篇
冶金工业   394篇
原子能技术   41篇
自动化技术   101篇
  2023年   4篇
  2022年   9篇
  2021年   12篇
  2019年   23篇
  2018年   22篇
  2017年   15篇
  2016年   14篇
  2015年   9篇
  2014年   19篇
  2013年   41篇
  2012年   23篇
  2011年   57篇
  2010年   29篇
  2009年   49篇
  2008年   45篇
  2007年   35篇
  2006年   36篇
  2005年   32篇
  2004年   43篇
  2003年   43篇
  2002年   37篇
  2001年   34篇
  2000年   35篇
  1999年   53篇
  1998年   162篇
  1997年   100篇
  1996年   80篇
  1995年   56篇
  1994年   36篇
  1993年   33篇
  1992年   33篇
  1991年   26篇
  1990年   22篇
  1989年   24篇
  1988年   21篇
  1987年   16篇
  1986年   17篇
  1985年   8篇
  1984年   12篇
  1983年   8篇
  1982年   7篇
  1981年   10篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   11篇
  1976年   9篇
  1975年   5篇
  1973年   3篇
  1964年   3篇
排序方式: 共有1443条查询结果,搜索用时 0 毫秒
51.
This paper reports transportation of the target microbe by the laser trapped microtools with minimum laser irradiation to the target. The size of a microtool (MT) is around micrometer. The MTs are manipulated by the focused laser under the microscope to manipulate the target microbe. Here we propose a pinpoint injection method of MTs at the desired location in the microchamber, which is filled with liquid. At first, we classified the injection method of the MTs in four categories. Here we employed a new method to install the MTs inside the microchamber. We developed a MT holding chip to install the MTs. The MTs were injected in the microchamber, and were manipulated successfully by the laser scanning micromanipulator to transport the target microbe for separation. The proposed method is useful for the pinpoint injection of MTs and separation by the indirect micromanipulation.  相似文献   
52.
Supermedia-enhanced Internet-based telerobotics   总被引:4,自引:0,他引:4  
This paper introduces new planning and control methods for supermedia-enhanced real-time telerobotic operations via the Internet. Supermedia is the collection of video, audio, haptic information, temperature, and other sensory feedback. However, when the communication medium used, such as the Internet, introduces random communication time delay, several challenges and difficulties arise. Most importantly, random communication delay causes instability, loss of transparency, and desynchronization in real-time closed-loop telerobotic systems. Due to the complexity and diversity of such systems, the first challenge is to develop a general and efficient modeling and analysis tool. This paper proposes the use of Petri net modeling to capture the concurrency and complexity of Internet-based teleoperation. Combined with the event-based planning and control method, it also provides an efficient analysis and design tool to study the stability, transparency, and synchronization of such systems. In addition, the concepts of event transparency and event synchronization are introduced and analyzed. This modeling and control method has been applied to the design of several supermedia-enhanced Internet-based telerobotic systems, including the bilateral control of mobile robots and mobile manipulators. These systems have been experimentally implemented in three sites test bed consisting of robotic laboratories in the USA, Hong Kong, and Japan. The experimental results have verified the theoretical development and further demonstrated the stability, event transparency, and event synchronization of the systems.  相似文献   
53.
Amorphous ZrW2O8 powder and amorphous SiO2 powder were prepared by a sol–gel process as raw materials, and high-density ZrW2O8–SiO2 were successfully prepared at a much lower temperature of 923 K for a much shorter holding time of 10 min by spark plasma sintering (SPS) method rather than by conventional melt-quenching method. The relative densities of 0.85ZrW2O8–0.15SiO2 and 0.70ZrW2O8–0.30SiO2 were 99.4% and 96.6%, respectively. The combined technique of a sol–gel process and SPS should enable us to prepare the varied types of high-density composites of ZrW2O8 without severe thermal cracking caused by melt-quenching. The thermal expansion properties and dielectric properties of ZrW2O8–SiO2 were also investigated.  相似文献   
54.
为了开展核物理、粒子物理和凝聚态物理方面的研究 ,在中国原子能科学研究院建成了 1台 β核磁共振及 β核四极共振谱仪。利用该谱仪精确测量了12 B的极化度和12 B基态磁矩 ,所测量的12 B在Cu中的极化度为 1 1 4%± 0 6% ,12 B磁矩 μ =1 0 0 0 2± 0 0 0 2 8nm。实验应用证实该谱仪性能可靠。  相似文献   
55.
Highly-conductive poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) films obtained by the addition of dimethylsulfoxide (DMSO) and the argon plasma exposure were used as a transparent conductive anode (TCA) for copper-phthalocyanine (CuPc)/C60 organic thin-film solar cells (OSCs). The CuPc/C60 OSCs on as-grown DMSO added PEDOT:PSS layer showed a power efficiency of 0.6%, whereas it was improved markedly to 1.34% after the atmospheric-pressure argon plasma exposure, which was comparable to that formed on indium-tin-oxide layer. Effects of the DMSO addition and the argon plasma exposure in the spin-coated PEDOT:PSS films is demonstrated in terms of the in-depth characterization of optical and electrical properties.  相似文献   
56.
Magnesium (Mg) composite reinforced with carbon nanotubes (CNTs) having superior mechanical properties was fabricated using both pure Mg and AZ61 Mg alloy matrix in this study. The composites were produced via powder metallurgy route containing wet process using isopropyl alcohol (IPA) based zwitterionic surfactant solution with unbundled CNTs. The produced composites were evaluated with tensile test and Vickers hardness test and analyzed by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and electron back scattered diffraction (EBSD). As a result, only with AZ61 Mg alloy matrix, tensile strength of the composite was improved. In situ formed Al2MgC2 compounds at the interface between Mg matrix and CNTs effectively reinforced the interfacial bonding and enabled tensile loading transfer from the Mg matrix to nanotubes. Furthermore, it was clarified that the microstructures and grain orientations of the composite matrix were not significantly influenced by CNT addition.  相似文献   
57.
In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.  相似文献   
58.
A multi-bunch photo-cathode RF gun system has been developed as an electron source for the production of intense quasi-monochromatic X-rays based on inverse Compton scattering. The desired multi-bunch beam is 100 bunches/pulse with a total charge of 500 nC and a bunch spacing of 2.8 ns. We modified the gun cavity of a ‘BNL-type IV’ RF gun to allow a CsTe cathode plug in the end plate. The system uses a four-dipole chicane beam line to allow the injection of laser light normal to the cathode surface. We compensate the gun cavity beam loading caused by the high-intensity multi-bunch electron beam by injecting the laser pulse before RF power has filled the cavity. We have achieved a total intensity of 220 nC in 100 bunches with a bunch-to-bunch energy spread under 1.3% (peak-to-peak). This paper concentrates on experiments to generate the high-intensity multi-bunch beam with compensation of the bunch-to-bunch energy spread due to heavy beam loading.  相似文献   
59.
Skin‐based electrical‐signal monitoring is one of the basic and noninvasive diagnostic methods for observing vital signals that contain valuable information about the dynamic status of the inner body. Soft bioelectronic devices are developed for the acquisition of high‐quality biosignals by taking advantage of their inherent thin and soft bodies. Among these devices, the organic electrochemical transistor (OECT) is a promising local transducing amplifier because of its key advantages, such as low operating voltage, high transconductance, and biocompatibility. However, the transistor's direct electrolyte‐gated operation limits its ability to measure biosignals only when the electrolyte exists. Here, an ultrathin OECT‐based wearable electrophysiological sensor based on a thin (≈6 µm) and nonvolatile gel electrolyte is reported, which can operate on dry biological surfaces. This sensor can measure biopotentials with a high mechanical stability and high signal‐to‐noise ratio (24 dB) even from dry surfaces of the human body and also shows stable performance during long‐term continuous monitoring and multiple reuse in a test that lasted more than a week.  相似文献   
60.
We observed crack generation and structural changes in electroless nickel–phosphorus (Ni–P) plating layers formed on copper-metalized silicon nitride substrates both during thermal cycling from ? 40 to 250 °C and during storage (not cycling) at 250 °C in order to investigate the effect of the phosphorus contents on crack generation and growth in the Ni–P platings. The used platings contained phosphorus at three different contents: 2.1 wt% [Ni–P(low)], 6.5 wt% [Ni–P(med)], and 10.9 wt% [Ni–P(high)]. The generation time and the amount of cracks were strongly dependent on their phosphorus contents. More cracks appeared after thermal cycling than after storage at 250 °C. In Ni–P(low), cracks were generated after 200 thermal cycles, whereas no cracks were observed even after 250 h of storage at 250 °C. In Ni–P(med) and Ni–P(high), both during thermal cycling and storage at 250 °C, cracks formed during or after crystallization of the amorphous layers. These results suggest that the primary factors affecting the generation of cracks in electroless Ni–P platings are crystallization of the Ni–P platings and repeated changes in thermal stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号