首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   1篇
化学工业   4篇
机械仪表   1篇
轻工业   11篇
无线电   3篇
一般工业技术   28篇
冶金工业   9篇
自动化技术   9篇
  2024年   1篇
  2019年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   7篇
  2009年   7篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   6篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
61.
A new ultrasound contrast imaging technique is described that optimally employs the rupture of the contrast agent. It is based on a combination of multiple high frequency, broadband, imaging pulses and a separate release burst. The imaging pulses are used to survey the target before and after the rupture and release of free gas bubbles. In this way, both processes (imaging and release) can be optimized separately. The presence of the contrast agent is simply detected by correlating or subtracting the signal responses of the imaging pulses. Because the time delay between the imaging pulses can be very short, the subtraction is less affected by tissue motion and can be done in real time. In vitro measurements showed that by using a release burst, the detection sensitivity increased 12 to 43 dB for different types of contrast agents. In the presence of a moving phantom, the increase in sensitivity was 22 dB. This new method is very sensitive for contrast agent detection in fundamental imaging mode and, therefore, non-linear propagation effects do not limit the maximum obtainable agent-to-tissue ratio. However, because of the inherent destruction of the contrast agent, it has to operate in an intermittent way. Through experiments, we have demonstrated the potential of the method to achieve simultaneous high sensitivity for contrast detection, i.e., high agent-to-tissue ratio, and high spatial resolution performance for different types of contrast agents  相似文献   
62.
The cross-correlation method (CCM) for blood flow velocity measurement using Doppler ultrasound is based on time delay estimation of echoes from pulse-to-pulse. The sampling frequency of the received signal is usually kept as low as possible in order to reduce computational complexity, and the peak in the correlation function is found by interpolating the correlation function. The parabolic-fit interpolation method introduces a bias at low sampling rate to the ultrasound center frequency ratio. In this study, four different methods are suggested to improve the estimation accuracy: (1) Parabolic interpolation with bias-compensation, derived from a theoretical signal model. (2) Parabolic interpolation combined with linear filter interpolation of the correlation function. (3) Parabolic interpolation to the complex correlation function envelope. (4) Matched filter interpolation applied to the correlation function. The new interpolation methods are analyzed both by computer simulated signals and RF-signals recorded from a patient with time delay larger than 1/f(0), where f(0) is the center frequency. The simulation results show that these methods are more accurate than the parabolic-fit method. From the simulation, the worst estimation accuracy is about 1.25% of 1/f(0) for the parabolic-fit interpolation, and it is improved by the above methods to less than 0.5% of 1/f(0) when the sampling rate is 10 MHz, the center frequency is 2.5 MHz and the bandwidth is 1 MHz. This improvement also can be observed in the experimental data. Furthermore, the matched filter interpolation gives the best performance when signal-to-noise ratio (SNR) is low. This is verified both by simulation and experimentation.  相似文献   
63.
Parallel beamforming is frequently used to increase the acquisition rate of medical ultrasound imaging. However, such imaging systems will not be spatially shift invariant due to significant variation across adjacent beams. This paper investigates a few methods of parallel beam-forming that aims at eliminating this flaw and restoring the shift invariance property. The beam-to-beam variations occur because the transmit and receive beams are not aligned. The underlying idea of the main method presented here is to generate additional synthetic transmit beams (STB) through interpolation of the received, unfocused signal at each array element prior to beamforming. Now each of the parallel receive beams can be aligned perfectly with a transmit beam--synthetic or real--thus eliminating the distortion caused by misalignment. The proposed method was compared to the other compensation methods through a simulation study based on the ultrasound simulation software Field II. The results have been verified with in vitro experiments. The simulations were done with parameters similar to a standard cardiac examination with two parallel receive beams and a transmit-line spacing corresponding to the Rayleigh criterion, wavelength times f-number (lambda x f#). From the results presented, it is clear that straightforward parallel beamforming reduces the spatial shift invariance property of an ultrasound imaging system. The proposed method of using synthetic transmit beams seems to restore this important property, enabling higher acquisition rates without loss of image quality.  相似文献   
64.
A procedure adapted for rapid routine analyses was used to determine the content of starch, amylose, low molecular weight carbohydrates, and dietary fibre in grain from 37 barley genotypes grown in triplicate yield trials. Among 20 high-yielding spring barley varieties grown in two subsequent years, the content of starch varied from 55 to 62% of the dry matter, while the content of amylose varied from 23 to 35% and averaged 30% of the starch. Among 17 exotic genotypes and mutant lines the content of starch and amylose in starch varied from 43 to 62% and from 17 to 48%, respectively. The amylose content was related neither to starch content nor grain yield. The content of low molecular weight carbohydrates was high in some starch-deficient mutants but close to 2% in all other varieties and genotypes. There was a negative relation between grain yield and low molecular weight carbohydrates among the high-yielding varieties. The content of dietary fibre varied from 18 to 25% in high-yielding varieties, but was considerably influenced by environment. The content of dietary fibre was unrelated to grain yield or kernel weight. The exotic genotypes contained from 14 to 29% dietary fibre. Starch-deficient mutants produced more dietary fibre per kernel than did normal varieties.  相似文献   
65.
Metastasis to the brain is a feared complication of systemic cancer, associated with significant morbidity and poor prognosis. A better understanding of the tumor metabolism might help us meet the challenges in controlling brain metastases. The study aims to characterize the metabolic profile of brain metastases of different origin using high resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) to correlate the metabolic profiles to clinical and pathological information. Biopsy samples of human brain metastases (n = 49) were investigated. A significant correlation between lipid signals and necrosis in brain metastases was observed (p < 0.01), irrespective of their primary origin. The principal component analysis (PCA) showed that brain metastases from malignant melanomas cluster together, while lung carcinomas were metabolically heterogeneous and overlap with other subtypes. Metastatic melanomas have higher amounts of glycerophosphocholine than other brain metastases. A significant correlation between microscopically visible lipid droplets estimated by Nile Red staining and MR visible lipid signals was observed in metastatic lung carcinomas (p = 0.01), indicating that the proton MR visible lipid signals arise from cytoplasmic lipid droplets. MRS-based metabolomic profiling is a useful tool for exploring the metabolic profiles of metastatic brain tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号