首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360777篇
  免费   24613篇
  国内免费   13125篇
电工技术   18339篇
技术理论   27篇
综合类   20966篇
化学工业   56549篇
金属工艺   20824篇
机械仪表   21150篇
建筑科学   24354篇
矿业工程   9434篇
能源动力   9052篇
轻工业   21157篇
水利工程   6206篇
石油天然气   19016篇
武器工业   2301篇
无线电   40404篇
一般工业技术   48025篇
冶金工业   16913篇
原子能技术   3252篇
自动化技术   60546篇
  2024年   1058篇
  2023年   4455篇
  2022年   7777篇
  2021年   11564篇
  2020年   8797篇
  2019年   7305篇
  2018年   21304篇
  2017年   21435篇
  2016年   17396篇
  2015年   11718篇
  2014年   14422篇
  2013年   16933篇
  2012年   21462篇
  2011年   28731篇
  2010年   25293篇
  2009年   21870篇
  2008年   22857篇
  2007年   22902篇
  2006年   15914篇
  2005年   14639篇
  2004年   10322篇
  2003年   9075篇
  2002年   8031篇
  2001年   6793篇
  2000年   6927篇
  1999年   7387篇
  1998年   6046篇
  1997年   4933篇
  1996年   4586篇
  1995年   3801篇
  1994年   3038篇
  1993年   2127篇
  1992年   1682篇
  1991年   1330篇
  1990年   998篇
  1989年   798篇
  1988年   585篇
  1987年   366篇
  1986年   284篇
  1985年   208篇
  1984年   143篇
  1983年   105篇
  1982年   133篇
  1981年   107篇
  1980年   81篇
  1968年   47篇
  1966年   43篇
  1965年   48篇
  1955年   64篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
41.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
42.
Equilibrium swelling and rheological tests were adopted to systematically investigate the effects of softener type and dosage on the crosslink densities. The results turned out that the chemical crosslink density could be distinguished from the physical crosslink density by comparing the results of equilibrium swelling and rheological tests. The liquid butadiene (LB) as a softener leads to the greatest reduction in crosslink density, followed by polyethylene wax (PW) and paraffinic oil (PO). The tensile strength decreases with increasing PO content while shows peak values with increase of LB and PW contents. The dependencies of chemical crosslink density on the aging time under 150°C are quite different for the three softeners, which can be expected from the double crosslinking networks consisting of small softener and large main crosslinking networks. Further investigation has been performed to correlate the tensile strength with chemical crosslink density of ethylene propylene diene monomer elastomer vulcanizates. Three different linear relationships can be obtained for the softeners independent of the aging time. It can now be expected from this study that the role of some new softeners in rubber compounds is not only confined to plasticization but also forms crosslinking networks in the peroxide-cured rubbers.  相似文献   
43.
Neoantigen vaccines and adoptive dendritic cell (DC) transfer are major clinical approaches to initiate personalized immunity in cancer patients. However, the immunization efficacy is largely limited by the in vivo trajectory including neoantigens’ access to resident DCs and DCs’ access to lymph nodes (LNs). Herein, an innovative strategy is proposed to improve personalized immunization through neoantigen-loaded nanovaccines synergized with adoptive DC transfer. It is found that it enables selective delivery of neoantigens to resident DCs and macrophages by coating cancer cell membranes onto neoantigen-loaded nanoparticles. In addition, the nanovaccines promote the secretion of chemokine C-C motif ligand 2 (CCL2), CCL3, and C-X-C motif ligand 10 from macrophages, thus potentiating the access of transferred DCs to LNs. This immunization strategy enables coordinated delivery of identified neoantigens and autologous tumor lysate-derived undefined antigens, leading to initiation of antitumor T cell immunity in a personalized manner. It significantly inhibits tumor growth in prophylactic and established mouse tumor models. The findings provide a new vision for potentiating adoptive cell transfer by nanovaccines, which may open the door to a transformative possibility for improving personalized immunization.  相似文献   
44.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   
45.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
46.
Gao  Zehai  Liu  Yang  Li  Nan  Ma  Kangjie 《Water Resources Management》2022,36(8):2685-2702
Water Resources Management - Urban river not only has the important function in urban hydrological environment, but also is an area for entertainment. Water quality assessment is the core technique...  相似文献   
47.

LiFe2/3Mn1/3PO4/C composite was prepared by the rheological phase reaction using LiH2PO4, Li2CO3, FePO4, Mn(Ac)2·4H2O and ascorbic acid as starting materials. The crystal structure and morphology of as-synthesized sample were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The analysis of XRD results showed that the obtained sample was single-phase with orthorhombic olivine-type structure (Pnma space group). SEM micrographs revealed that the sample was aggregates, with an irregular morphology. The initial discharge capacity was 166.9, 149.1, 139.6, 112.8, 82.93 mAh g??1 at the rate of 0.1, 0.5, 1, 2, and 10 C, respectively. And when the rate was 0.1, 0.5, 1, 2, and 10 C, the capacity retention was 92.2%, 90%, 92.9%, 97.6%, 91.5% after 50, 100, 200, 200, 500 cycles, respectively.

  相似文献   
48.
In this study, C/SiOC and C/SiO2 composites were prepared by using carbonaceous microspheres with different surface functional groups. Carbonaceous microspheres based on hydrothermal reaction of glucose contains hydroxyl group, while the surface carboxyl group increases after NaOH etching. The hydroxyl group increases the oxygen-enriched structural units of SiOC ceramics, and the C spheres are closely enwrapped in SiOC matrix after pyrolysis at 900 °C. However, the interfacial reaction of surface carboxyl with Si–OH results in the formation of cristobalite SiO2, and C spheres are not only encased inside the SiOC matrix, but also dispersed outside of SiOC ceramics. After removal of C via calcination at 500 °C for 5 h, C/SiOC and C/SiO2 composites are transformed into amorphous SiO2 and cristobalite SiO2, respectively. The thermogravimetric analysis indicates the oxidation resistance of SiOC is superior to that of C and SiO2.  相似文献   
49.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
50.
Crosslinking of polyolefin elastomer (POE, ENGAGE™ 8480) with Dicumyl Peroxide (DCP) can have effects on its crystallization dynamics, crystal structure, and properties. The POE crosslinked uniformly has significantly lower crystalline ability than the one with only amorphous phase crosslinked, which, in turn, has weaker crystalline ability than neat POE. The crystallinity and melting point depend on how the POE is crosslinked. The neat POE and POE crosslinked in amorphous phase only, are investigated with DSC and in-situ tensile/synchrotron radiation (WAXD/SAXS). In situ tensile/synchrotron X-ray during a uniaxial stretching process indicates that severe crystal fragmentation is observed at a strain around 45%, and with further increase in strain. The stress in the crosslinked POE is significantly larger than neat POE. For both samples, crystal orientation increases sharply within the strain range up to 88% where orientation-induced new crystals aligned in stretching direction are observed. The long period increases more in stretching direction for the crosslinked POE, consistent with larger stress in this sample, and the stress difference is more pronounced at large strains (27.3 vs. 10.9 MPa at a strain 435%). Permanent set of the crosslinked POE is smaller, consistent with less oriented crystals observed after the test for permanent set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号