Supported metal catalysts, particularly noble metals supported on SiO2, have attracted considerable attention due to the importance of the silica–metal interface in heterogeneous catalysis and in electronic device fabrication. Several important issues, e.g., the stability of the metal–oxide interface at working temperatures and pressures, are not well-understood. In this review, the present status of our understanding of the metal–silica interface is reviewed. Recent results of model studies in our laboratories on Pd/SiO2/Mo(1 1 2) using LEED, AES and STM are reported. In this work, epitaxial, ultrathin, well-ordered SiO2 films were grown on a Mo(1 1 2) substrate to circumvent complications that frequently arise from the silica–silicon interface present in silica thin films grown on silicon. 相似文献
The catalytic activities of alumina prepared from an Al alkoxide-amine adduct monomer for the reaction of cyclopentene oxide with piperidine was determined after various pretreatments, including calcination and exposure to moisture. They were compared with the activity of alumina prepared by the conventional hydrolysis method. It was found that the as-prepared sample from the alkoxide-amine monomer preparation was five times more active than a conventional preparation, suggesting that it has a higher density of surface Lewis acid sites. However, its activity was much more severely suppressed by exposure to moisture. 相似文献
γ-Al2O3 supported vanadium oxides were modified by tungsten and molybdenum oxides in order to improve dispersion and selectivity towards olefins in propane oxidative dehydrogenation (ODH). Both vanadium–tungsten and vanadium–molybdenum catalysts were obtained by adsorption of mixed isopolyanions (VW5O195−, V2W4O194−, VMo5O195− and V2Mo4O194−) from aqueous solutions. The isopolyanion solutions were characterized by UV-Vis and 51V NMR spectroscopy. Vanadium, vanadium–tungsten and vanadium–molybdenum precursors and catalysts were also characterized by UV-Vis (diffuse reflectance) and solid state 51V NMR spectroscopy. An improved selectivity to propene in the presence of tungsten and molybdenum in VOx/γ-Al2O3 was observed and attributed to dilution of vanadium by tungsten or molybdenum oxides on the γ-Al2O3 surface. 相似文献
Currently there are design barriers inhibiting the implementation of high-precision digital signal processing (DSP) objects with field programmable logic (FPL) devices. This paper explores overcoming these barriers by fusing together the popular distributed arithmetic (DA) method with the residue number system (RNS) for use in FPL-centric designs. The new design paradigm is studied in the context of a high-performance filter bank and a discrete wavelet transform (DWT). The proposed design paradigm is facilitated by a new RNS accumulator structure based on a carry save adder (CSA). The reported methodology also introduces a polyphase filter structure that results in a reduced look-up table (LUT) budget. The 2C-DA and RNS-DA are compared, in the context of a FPL implementation strategy, using a discrete wavelet transform (DWT) filter bank as a common design theme. The results show that the RNS-DA, compared to a traditional 2C-DA design, enjoys a performance advantage that increases with precision (wordlength). 相似文献
Support effects form important aspect of hydrodesulfurization (HDS) studies and mixed oxide supports received maximum attention in the last two decades. This review will focus attention on studies on mixed oxide supported Mo and W catalysts. For convenience of discussion, these are divided into Al2O3 containing mixed oxide supports, TiO2 containing mixed oxide supports, ZrO2 containing mixed oxide supports and other mixed oxide supports containing all the rest. TiO2 containing mixed oxides received maximum attention, especially TiO2–Al2O3 supported catalysts. A brief discussion about their prospects for application to ultradeep desulfurization is also included. An overview of the available literature with emphasis on research carried out in our laboratory form the contents of this publication. 相似文献
A CEC-funded project has been performed to tackle the problem of producing an advanced Life Monitoring System (LMS) which would calculate the creep and fatigue damage experienced by high temperature pipework components. Four areas were identified where existing Life Monitoring System technology could be improved:
1. 1. the inclusion of creep relaxation
2. 2. the inclusion of external loads on components
3. 3. a more accurate method of calculating thermal stresses due to temperature transients
4. 4. the inclusion of high cycle fatigue terms.
The creep relaxation problem was solved using stress reduction factors in an analytical in-elastic stress calculation. The stress reduction factors were produced for a number of common geometries and materials by means of non-linear finite element analysis. External loads were catered for by producing influence coefficients from in-elastic analysis of the particular piping system and using them to calculate bending moments at critical positions on the pipework from load and displacement measurements made at the convenient points at the pipework. The thermal stress problem was solved by producing a completely new solution based on Green's Function and Fast Fourier transforms. This allowed the thermal stress in a complex component to be calculated from simple non-intrusive thermocouple measurements made on the outside of the component. The high-cycle fatigue problem was dealt with precalculating the fatigue damage associated with standard transients and adding this damage to cumulative total when a transient occurred.
The site testing provided good practical experience and showed up problems which would not otherwise have been detected. 相似文献
Among the photocathodes used for particle identification based on the Cherenkov Ring Imaging technique, the TMAE molecule is still the best in terms of quantum efficiency. Despite the fact that TMAE gaseous photocathodes have already been used in a number of large experiments, one still seeks answers to many detailed questions. We present a systematic study of gaseous photocathodes based on TMAE mixed with helium, hydrocarbon and CF4-based gases at normal pressure. The study includes a measurement of the electron drift velocity, gas quenching properties, single electron pulse height spectra and anode wire aging. The paper makes recommendations for carrier gas mixtures to obtain the best quenching, and suggests how to manage TMAE wire aging. This study was motivated by a specific particle identification detector proposal, the Fast Drift CRID proposed for the B-factory at SLAC. 相似文献