排序方式: 共有33条查询结果,搜索用时 0 毫秒
21.
一种Apriori算法的改进 总被引:2,自引:0,他引:2
Apriori算法在处理关联规则分析时,当数据立方体数据稠密时,实现迭代性质将需要非常复杂的数据结构。针对上述问题,本文提出了一种改进的Apriori-ni算法,该算法没有用迭代性质来剪枝,即不基于迭代属性的算法。对Apriori算法和Apriori-ni算法进行了分析和比较,实验结果表明,当项目集很多时,Apriori-ni算法能节约计算开销,从而提高算法的效率。 相似文献
22.
针对目前计算机网络课程教学中存在的问题,在分析计算机网络课程的特点和教学现状的基础上,本文分别对课堂教学模式和实验教学模式进行了研究和探讨,强调培养学生的思维能力、创新能力和解决具体问题的能力。教学实践表明,通过对教学模式的改进,进一步加深了学生对计算机网络的原理、知识、概念的理解,为后续课程的学习奠定了坚实的基础。 相似文献
23.
25.
针对鲸鱼优化算法(whale optimization algorithm, WOA)易陷入局部最优,收敛速度慢和寻优精度低等问题,提出一种融合混沌映射和二次插值的自适应鲸鱼优化算法(adaptive whale optimization algorithm based on chaotic mapping and quadratic interpolation, CQAWOA)。引入混沌映射在初始化阶段生成新种群,实现种群多样性;设计自适应权重,提高算法全局搜索和局部寻优能力并加快收敛速度;利用二次插值策略生成新的鲸鱼个体,采用贪婪策略更新局部最优解,提高种群计算的精度。通过15个基准函数将改进算法与其它优化算法进行对比测试,测试结果验证了在求解过程中,改进算法寻优速度和求解精度均存在显著提升。 相似文献
26.
翻译模型在进行知识图谱补全的过程中往往会忽略三元组中的语义信息。为弥补这一缺陷,本文构造了一种融合自适应增强语义信息的知识图谱补全方法。通过微调BERT模型获取三元组中的语义信息,并对高纬度向量做降维处理,最后运用注意力机制生成语义信息软约束规则,将该规则添加至原翻译模型中实现语义信息的自适应增强。经实验对比,本文所提方法较原翻译模型在数值上约提升2.6%,验证了方法的合理性与有效性。 相似文献
27.
针对蝴蝶优化算法(butterfly optimization algorithm, BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly with reverse mutation towards optimization learning, OMSSBOA)。引入柯西变异对最优蝴蝶个体进行扰动,避免算法陷入局部最优;将改进的樽海鞘群优化算法(salp swarm algorithm, SSA)嵌入到BOA,平衡算法全局勘探和局部开采的比重,进而提高算法收敛速度;利用趋优变异反向学习策略扩大算法搜索范围并提升解的质量,进而提高算法的寻优精度。将改进算法在10种基准测试函数上进行仿真实验,结果表明,改进算法具有较好的寻优性能和鲁棒性。 相似文献
28.
针对粒子群算法(PSO)种群多样性低和易于陷入局部最优等问题,提出一种粒子置换的双种群综合学习PSO算法(PP-CLPSO).根据PSO算法的收敛特性和Logistic映射的混沌思想,设计并行进化的PSO种群和混沌化种群,结合粒子编号机制,形成双种群系统中粒子的同号结构和同位结构,其中粒子的惯性权重根据适应度值自适应调... 相似文献
29.
30.
本文针对计算机网络资源分布式优化问题建立了多维弹性网络的物理模型和数学模型,将优化分配计算机网络资源问题转变为计算多维弹性网络空间的形变过程。该模型和方法能够刻画多维弹性网络空间中的基类节点之间的复杂的社会交互行为,并能描述基类节点随着局势的变化各自采取的动态策略和自治行为。 相似文献