全文获取类型
收费全文 | 159篇 |
免费 | 36篇 |
国内免费 | 44篇 |
专业分类
综合类 | 6篇 |
化学工业 | 57篇 |
金属工艺 | 23篇 |
机械仪表 | 2篇 |
武器工业 | 3篇 |
无线电 | 1篇 |
一般工业技术 | 145篇 |
原子能技术 | 1篇 |
自动化技术 | 1篇 |
出版年
2023年 | 2篇 |
2022年 | 4篇 |
2021年 | 3篇 |
2020年 | 2篇 |
2019年 | 6篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2015年 | 3篇 |
2014年 | 7篇 |
2013年 | 15篇 |
2012年 | 12篇 |
2011年 | 12篇 |
2010年 | 18篇 |
2009年 | 17篇 |
2008年 | 24篇 |
2007年 | 19篇 |
2006年 | 24篇 |
2005年 | 16篇 |
2004年 | 5篇 |
2003年 | 6篇 |
2002年 | 5篇 |
2001年 | 9篇 |
2000年 | 8篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 10篇 |
1992年 | 3篇 |
1989年 | 1篇 |
排序方式: 共有239条查询结果,搜索用时 0 毫秒
11.
利用热压烧结TiH2,Si和C粉获得了致密度大于98%的层状Ti3SiC2陶瓷。利用压痕法,在不同的载荷下测定了材料的维氏硬度, 发现其硬度值随载荷的增加而降低,在最大载荷30kg时,硬度值为4GPa。压痕对角线没有发现径向裂纹的出现。 这归因于多重能量吸收机制——颗粒的层裂、裂纹的扩展、颗粒的变形等。利用三点弯曲法和单边切口梁法测定了材料的强度和韧性分别为270MPa和6.8MPa·m1/2。Ti3SiC2材料的断口表现出明显的层状性质,大颗粒易于发生层裂和穿晶断裂,小颗粒易被拔出。当裂纹沿平行于Ti3SiC2基面的方向扩展造成颗粒的层裂,当裂纹沿垂直于基面的方向扩展时,裂纹穿过颗粒的同时,在颗粒内部发生偏转,使裂纹的扩展路径增加。裂纹的扩展路径类似人们根据仿生结构设计的层状复合材料。裂纹在颗粒内的多次偏转、裂纹钉扎以及颗粒的层裂和拔出等是材料韧性提高的主要原因。此外,在室温下得到的荷载-位移曲线,说明Ti3SiC2材料不象其它陶瓷材料的脆性断裂,而是具有金属一样的塑性。 相似文献
12.
以工业Si粉为原料,α-Si3N4粉为稀释剂,聚乙烯醇为粘结剂,采用反应烧结工艺制备了Si3N4陶瓷.研究了稀释剂量对反应烧结Si3N4陶瓷的体积密度、开气孔率、相组成、微结构、弯曲强度和抗热震性的影响.结果表明,随稀释剂量的增加,Si3N4陶瓷的体积密度从2.27g/cm3降至2.04g/cm3,开气孔率从23%升至33.8%.Si3N4 陶瓷由α-Si3N4、β-Si3N4 和少量单质Si组成.Si3N4 主要以针状晶形式存在,残留 Si 呈不规则块体.随着稀释剂量的增加,4组 Si3N4 陶瓷的三点抗弯强度分别为119MPa、112MPa、146MPa和113MPa;经50次800℃至室 相似文献
13.
14.
15.
针对国产石英纤维强度,本工作采用液相浸渍法(硅溶胶、石英浆料和氮化硅浆料)制得Mini复合材料,利用两参数Weibull分布,对其强度及分布进行了研究,采用Kolmogrov非参数检验对其分布进行了检验.同时研究了热处理对纤维束强度分布的影响.结果表明,可用两参数Weibull分布表征纤维束及其Mini复合材料强度分布.热处理使纤维强度急剧下降,且强度分散性变大;相同处理温度下,由硅溶胶制得的Mini复合材料强度较高,分散性较小;而石英或氮化硅浆料制备的Mini复合材料强度较低. 相似文献
16.
纤维增韧碳化硅陶瓷基复合材料的界面区研究 总被引:2,自引:0,他引:2
在连续纤维增强陶瓷基复合材料中,界面调节脆性基体与脆性纤维之间匹配关系的功能以及自身特有的物理化学性质,决定着复合材料的整体综合效能。本研究从实践中发现界面区的存在,并尝试提出界面区的概念。界面区是具有一定厚度,含有两处界面(界面相/基体和界面相/纤维)和体相(界面相)的区域。采用透射电子显微技术从微结构的角度研究了3DC/SiC内界面区与裂纹的相互作用行为。TEM观察表明,由于裂纹偏斜/贯穿竞争随时空的推演,基体主裂纹会在界面区的多处位置产生单多重偏斜、裂纹尖端前方应力集中诱发脱粘和开裂、纳米尺度微裂纹桥连等相互作用,其发生的具体部位和方式由界面区内各种相关界面(或断裂)韧性共同决定。此外,结合影响因素的讨论,初步建立起3DC/SiC内基体裂纹与界面区相互作用的物理模型。 相似文献
17.
3D C/SiC复合材料在复杂环境试验中性能演变的两重性 总被引:3,自引:0,他引:3
用减压化学气相浸渗法(LPCVI)制备2组3D C/SiC复合材料,其中一组具有不同厚度的PyC界面层,另一组PyC界面层厚度一定,但经过热处理.对C/SiC复合材料在复杂环境中性能演变的两重性,即确定性和随机性进行了研究.结果表明,残余强度及其波动性对评价材料的环境适应性和可靠性是必需的.界面层和涂层是对氧化环境最敏感的微结构控制单元.以敏感度排序,3种环境参数依次是温度、气氛和应力.气氛参数的排序是氧气、水和盐,应力参数的排序是疲劳/蠕变,蠕变和疲劳.应力通过增加涂层裂纹及宽度从而加速复合材料的性能演变.氧化物薄膜有利于涂层裂纹封填,水能促进这种封填,然而疲劳/蠕变应力会使涂层裂纹封填失效.因此包括有氧气、水、疲劳和蠕变的环境是所有环境中最恶劣的.为了使复合材料具有自适应性,PyC的厚度应为最优,以提高热处理的效果;需保持适中的涂层氧化速率,以提高近表面抗氧化性.而适中的氧化速率是由温度和氧化气体分压来控制的. 相似文献
18.
为了提高Zr-Si-C涂层与基体的结合强度,基于粉末埋入反应辅助涂覆工艺,采用新型化学气相反应法在SiC陶瓷表面制备Zr-Si-C涂层.SiC陶瓷基片被包埋于Zr-1%(质量分数)I2混合粉体中,在850~1 100 ℃进行化学气相反应.碘促进Zr原子向SiC陶瓷表面的传输,Zr与SiC之间的扩散反应导致在SiC表面生成连续的Zr-Si-C复合涂层.采用X射线衍射、扫描电镜结合X射线能谱分析以及相图分析确定了涂层微结构及相组成.结果表明:复合涂层内层为ZrC、中间层为Zr2Si-ZrC1-x复相区、外层为ZrC1-x.通过测量涂层厚度研究了涂层的生长动力学,在850~1 100 ℃范围内,涂层生长符合抛物线规律,活化能为(210±20)kJ/mol. 相似文献
19.
化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能 总被引:1,自引:0,他引:1
用化学气相渗透法制备了三维针刺碳纤维增强碳化硅陶瓷基复合材料,复合材料的平均密度为2.15 g/cm3,气孔率为16.0%.用氧乙炔焰研究了复合材料的烧蚀性能,用扫描电镜分析了烧蚀表面的形貌,用表面能谱分析了烧蚀产物的成分.复合材料的线烧蚀率和质量烧蚀率分别为0.03mm/s和0.004 7 g/s.在烧蚀中心区,烧蚀最严重,表层只有C纤维骨架,且C纤维呈针状,复合材料的烧蚀以升华和冲刷为主.在烧蚀过渡区,垂直于烧蚀面的C纤维表现出端部锐化、根部细化的特性,平行于烧蚀面的C纤维呈针状,复合材料的烧蚀以氧化和机械剥蚀为主.烧蚀边缘烧蚀不明显,烧蚀产物和SiC基体熔融后覆盖在烧蚀表面,阻碍了复合材料的进一步烧蚀,复合材料的烧蚀以氧化为主. 相似文献
20.
采用电泳沉积法结合化学气相渗透技术制备碳纳米管二次增韧的连续碳纤维增韧碳化硅(CNTs-C/SiC)复合材料。通过改变热解碳(PyC)界面上电泳沉积CNTs的时间,控制C/SiC复合材料中CNTs的含量,通过测试拉伸强度和断裂功,研究了CNTs含量及热处理对复合材料力学性能的影响。结果表明:在C/SiC复合材料PyC界面层上电沉积CNTs,能够大幅提高材料的拉伸强度和韧性。电沉积CNTs时间为5、8和10min时,CNTs-C/SiC复合材料的拉伸强度和断裂功分别提高了10.7%、39.3%、45.2%和31.1%、35.9%、46.5%。对未电沉积、电沉积8和10min的CNTs-C/SiC复合材料进行1 800℃热处理,发现材料的拉伸强度分别提高了64.4%、39.4%和49.5%。 相似文献