Short setup time is an essential element for the effective implementation of many lean pillars, i.e., JIT, and Kanban. Most of the current setup reduction methodologies are based on Shingo’s Single Minute Exchange of Dies (SMED) that suggests the conversion of internal setup operations to external operations. However, the conventional SMED approach – as proposed by Shingo – does not possess a systematic approach to accomplish this conversion. Thus, a new approach is proposed in order to aid the process engineers in implementing SMED. The proposed approach is based on the conventional SMED, but also it incorporates Multiple Criteria Decision-Making Techniques (MCDM) to the third implementation phase. The MCDM techniques used in this work are Analytical Hierarchal Process (AHP), Preference Selection Index (PSI) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The proposed approach provides a systematic procedure for selecting the best setup technique among the available alternatives, and takes also into consideration other factors that affect the decision-making process; including: cost, energy, facility layout, safety, life, quality and maintenance. A real example of PVC industry is used to exemplify the approach. The results demonstrate the capability of the proposed approach in setup time reduction, which in turn will improve machines’ utilization, and increase the productivity and flexibility of the whole facility. 相似文献
Mobile Networks and Applications - 5G/6G communication are first generation high speed wireless communication network which integrates the aerial data, terrestrial data and maritime data via... 相似文献
Cloud computing provides high accessibility, scalability, and flexibility in the era of computing for different practical applications. Internet of things (IoT) is a new technology that connects the devices and things to provide user required services. Due to data and information upsurge on IoT, cloud computing is usually used for managing these data, which is known as cloud‐based IoT. Due to the high volume of requirements, service diversity is one of the critical challenges in cloud‐based IoT. Since the load balancing issue is one of the NP‐hard problems in heterogeneous environments, this article provides a new method for response time reduction using a well‐known grey wolf optimization algorithm. In this paper, we supposed that the response time is the same as the execution time of all the tasks that this parameter must be minimized. The way is determining the status of virtual machines based on the current load. Then the tasks will be removed from the machine with the additional load depending on the condition of the virtual machine and will be transferred to the appropriate virtual machine, which is the criterion for assigning the task to the virtual machine based on the least distance. The results of the CloudSim simulation environment showed that the response time is developed in compared to the HBB‐LB and EBCA‐LB algorithm. Also, the load imbalancing degree is improved in comparison to TSLBACO and HJSA. 相似文献
In classical public‐key infrastructure (PKI), the certificate authorities (CAs) are fully trusted, and the security of the PKI relies on the trustworthiness of the CAs. However, recent failures and compromises of CAs showed that if a CA is corrupted, fake certificates may be issued, and the security of clients will be at risk. As emerging solutions, blockchain‐ and log‐based PKI proposals potentially solved the shortcomings of the PKI, in particular, eliminating the weakest link security and providing a rapid remedy to CAs' problems. Nevertheless, log‐based PKIs are still exposed to split‐world attacks if the attacker is capable of presenting two distinct signed versions of the log to the targeted victim(s), while the blockchain‐based PKIs have scaling and high‐cost issues to be overcome. To address these problems, this paper presents a secure and accountable transport layer security (TLS) certificate management (SCM), which is a next‐generation PKI framework. It combines the two emerging architectures, introducing novel mechanisms, and makes CAs and log servers accountable to domain owners. In SCM, CA‐signed domain certificates are stored in log servers, while the management of CAs and log servers is handed over to a group of domain owners, which is conducted on the blockchain platform. Different from existing blockchain‐based PKI proposals, SCM decreases the storage cost of blockchain from several hundreds of GB to only hundreds of megabytes. Finally, we analyze the security and performance of SCM and compare SCM with previous blockchain‐ and log‐based PKI schemes. 相似文献
Wireless body area network (WBAN) has witnessed significant attentions in the healthcare domain using biomedical sensor-based monitoring of heterogeneous nature of vital signs of a patient’s body. The design of frequency band, MAC superframe structure, and slots allocation to the heterogeneous nature of the patient’s packets have become the challenging problems in WBAN due to the diverse QoS requirements. In this context, this paper proposes an Energy Efficient Traffic Prioritization for Medium Access Control (EETP-MAC) protocol, which provides sufficient slots with higher bandwidth and guard bands to avoid channels interference causing longer delay. Specifically, the design of EETP-MAC is broadly divided in to four folds. Firstly, patient data traffic prioritization is presented with broad categorization including Non-Constrained Data (NCD), Delay-Constrained Data (DCD), Reliability-Constrained Data (RCD) and Critical Data (CD). Secondly, a modified superframe structure design is proposed for effectively handling the traffic prioritization. Thirdly, threshold based slot allocation technique is developed to reduce contention by effectively quantifying criticality on patient data. Forth, an energy efficient frame design is presented focusing on beacon interval, superframe duration, and packet size and inactive period. Simulations are performed to comparatively evaluate the performance of the proposed EETP-MAC with the state-of-the-art MAC protocols. The comparative evaluation attests the benefit of EETP-MAC in terms of efficient slot allocation resulting in lower delay and energy consumption.