首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3363篇
  免费   81篇
  国内免费   19篇
电工技术   195篇
综合类   5篇
化学工业   1059篇
金属工艺   108篇
机械仪表   111篇
建筑科学   99篇
能源动力   155篇
轻工业   207篇
水利工程   12篇
石油天然气   3篇
无线电   189篇
一般工业技术   778篇
冶金工业   171篇
原子能技术   120篇
自动化技术   251篇
  2023年   16篇
  2022年   32篇
  2021年   52篇
  2020年   22篇
  2019年   38篇
  2018年   54篇
  2017年   49篇
  2016年   65篇
  2015年   53篇
  2014年   78篇
  2013年   182篇
  2012年   121篇
  2011年   214篇
  2010年   148篇
  2009年   154篇
  2008年   181篇
  2007年   117篇
  2006年   149篇
  2005年   125篇
  2004年   88篇
  2003年   124篇
  2002年   98篇
  2001年   65篇
  2000年   79篇
  1999年   68篇
  1998年   106篇
  1997年   103篇
  1996年   77篇
  1995年   52篇
  1994年   45篇
  1993年   50篇
  1992年   32篇
  1991年   33篇
  1990年   36篇
  1989年   49篇
  1988年   31篇
  1987年   37篇
  1986年   55篇
  1985年   49篇
  1984年   59篇
  1983年   51篇
  1982年   34篇
  1981年   26篇
  1980年   21篇
  1979年   27篇
  1978年   21篇
  1977年   19篇
  1976年   15篇
  1974年   18篇
  1973年   12篇
排序方式: 共有3463条查询结果,搜索用时 203 毫秒
81.
The study investigates the performance of two-bed, silica gel-water adsorption refrigeration cycle with mass recovery process. The cycle with mass recovery can be driven by the relatively low temperature heat source. In an adsorption refrigeration cycle, the pressures in adsorber and desorber are different. The chiller with mass recovery process utilizes the pressure difference to enhance the refrigerant mass circulation. Cooling capacity and coefficient of performance (COP) were calculated by cycle simulation computer program to analyze the influences of operating conditions. The mass recovery cycle was compared with conventional cycle such as the single stage adsorption cycle in terms of cooling capacity and COP. The results show that the cooling capacity of mass recovery cycle is superior to that of conventional cycle and the mass recovery process is more effective for low regenerating temperature.  相似文献   
82.
Abstract— A novel preparation method for dichroic dye‐doped polymer‐dispersed liquid crystals has been developed. This was achieved by creating a porous polymer matrix first by washing out the liquid crystal from a polymer‐dispersed liquid crystal (PDLC), which is then refilled with dye‐doped liquid crystal. Optimizing the liquid crystal used in the refilling results in decreased turn‐on voltage and faster response time. Poster‐standard reflectivity and newspaper‐standard contrast was demonstrated with a 3.8‐in. QVGA reflective TFT display with a drive voltage of 10 V.  相似文献   
83.
In 1985 we developed an ultrahigh-resolution scanning electron microscope with a resolution of 0.5 nm. It is equipped with a field emission gun and an objective lens with a very short focal length. In this study we report a survey of some different preparation techniques and biological specimens using the new scanning electron microscope. Intracellular structures such as cell organelles were observed surprisingly sharper than those observed by ordinary scanning electron microscopes. However, at magnifications over 250,000 X, platinum particles could be discerned as scattered pebbles on the surface of all structures in coated materials. Using an uncoated but conductively stained specimen, we successfully observed ribosomes on a rough endoplasmic reticulum at a direct magnification of 1 million. In these images some protrusions were recognized on the ribosomes. Ferritin and immunoglobulin G were used as samples of biological macromolecules. These samples were observed without metal coating and conductive staining. The ferritin particles appeared as rounded bodies without any substructure on the surface and immunoglobulin G as complexes of three-unit bodies. In the latter the central body might correspond to the Fc fragment and two side ones to Fab fragments. We assume that ultrahigh-resolution scanning electron microscopy is an effective means for observation of the cell fine structures and biological macromolecules. It will open a new research field in biomedicine.  相似文献   
84.
We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa2Cu3O7-delta of 92 nm in thickness with photolithography techniques to have a hole of 4x9 microm2 and 2 microm wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current Ic were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 microm3), [Mn2(H2O)2(CH3COO)][W(CN)8]2H2O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10(-12) J T(-1) (10(-9) emu) with a HTS micro-SQUID magnetometer.  相似文献   
85.
Chang-Jiu Li  Guan-Jun Yang  Akira Ohmori 《Wear》2006,260(11-12):1166-1172
The lamellar structure determines mechanical properties of a thermal spray coating. A model for the erosion of thermally sprayed ceramic coatings resulting from the debonding of flattened ceramic particles is proposed based on the examination of the erosion mechanism. The relationship between erosion rate and microstructural parameters is established both experimentally and theoretically to reveal main lamellar structural parameters controlling erosion of thermally sprayed ceramic coating. The microstructural parameters include the mean bonding ratio between lamellae and thickness of the lamellae. The erosion rate of plasma-sprayed Al2O3 coatings was measured at impact angle of 90° under the fixed erosion test conditions. The correlation of theoretical model with the observed structural parameters and erosion data of alumina coatings was examined. It is revealed that the theoretical relationship agreed well with the observed relation. The results clearly revealed that the erosion of plasma-sprayed ceramic coating was inversely proportional to the mean lamellar bonding ratio. The influences of spray parameters on erosion effected mainly through their influences on the lamellar bonding. The erosion resistance of a thermally sprayed ceramic coating was controlled by coating fracture toughness.  相似文献   
86.
In order to observe intracellular structures by scanning electron microscopy, excess cytoplasmic matrix must be removed from the fractured surface of cells. Previously we reported an Osmium-DMSO-Osmium method devised for this purpose. This method is very effective in revealing intracellular structures, but requires osmium tetroxide for initial fixation with some consequent disadvantages. In the present study, a revised Osmium-DMSO-Osmium method is reported, in which an aldehyde mixture is used as the initial fixative instead of osmium tetroxide. As fixation is carried out by perfusion in this revised method, better preservation of fine structures is achieved than by the original method, especially in the central nervous tissue which tends to suffer from post-mortem degeneration. Moreover this method can be applied to cytochemical studies of intracellular structures with a scanning electron microscope (SEM). In this study, acid phosphatase of lysosomes is demonstrated in a coloured SEM micrograph.  相似文献   
87.
Conventional and gradient CoNiCrAlYSi coatings were produced by using low vacuum plasma spray and an additional step of diffusional over aluminizing (pack cementation) techniques on an Inconel-738 substrate. Hot corrosion of these coatings was investigated using Na2SO4–20wt%NaVO3 molten salt at 880?°C for 800?h. Hot corrosion rate was determined by measuring the weight gain of the specimens at regular intervals for a duration of 20?h. X-ray diffraction, field emission scanning electron microscopy and electron probe micro analysis techniques were used to determine the nature of phases, investigation of the thermally grown oxide, examination of the surface attack and determination of the elemental distribution. The gradient coating showed better performance by re-healing alumina scale due to its possession of more β phase as Al reservoir. Results indicated that pack cementation process caused an increase in amount of aluminum-rich β phase and better hot corrosion properties of gradient coatings owing to the Al enrichment in the outer layer and rapid formation of protective oxide on the surface.  相似文献   
88.
89.
A microtubule gliding assay is a biological experiment observing the dynamics of microtubules driven by motor proteins fixed on a glass surface. When appropriate microtubule interactions are set up on gliding assay experiments, microtubules often organize and create higher-level dynamics such as ring and bundle structures. In order to reproduce such higher-level dynamics on computers, we have been focusing on making a real-time 3D microtubule simulation. This real-time 3D microtubule simulation enables us to gain more knowledge on microtubule dynamics and their swarm movements by means of adjusting simulation parameters in a real-time fashion. One of the technical challenges when creating a real-time 3D simulation is balancing the 3D rendering and the computing performance. Graphics processor unit (GPU) programming plays an essential role in balancing the millions of tasks, and makes this real-time 3D simulation possible. By the use of general-purpose computing on graphics processing units (GPGPU) programming we are able to run the simulation in a massively parallel fashion, even when dealing with more complex interactions between microtubules such as overriding and snuggling. Due to performance being an important factor, a performance model has also been constructed from the analysis of the microtubule simulation and it is consistent with the performance measurements on different GPGPU architectures with regards to the number of cores and clock cycles.  相似文献   
90.
Dysregulation of tumor necrosis factor-α (TNFα), a pro-inflammatory cytokine, causes several diseases, making it an important therapeutic target. Here, we identified a novel DNA aptamer against human TNFα using in vitro selection, which included a high exclusion pressure process against non-binding and weak binders through microbead-assisted capillary electrophoresis (MACE) in only three rounds. Among the 15 most enriched aptamers, Apt14 exhibited the highest inhibitory activity for the interaction between TNFα and its cognate receptor in mouse L929 cells. For further improving the bioactivity of the aptamer, dimerization programed by hybridization was evaluated, resulting in the Apt14 dimer exhibited a twofold higher binding affinity and stronger inhibition compared to the monomer counterpart. Rapid identification of bioactive aptamers using MACE in combination with facile dimerization by hybridization accelerates the discovery of novel bioactive aptamers, paving the way toward replacing current monoclonal antibody therapy with the less expensive and non-immunogenic aptamer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号