首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  国内免费   2篇
化学工业   19篇
金属工艺   2篇
机械仪表   4篇
建筑科学   2篇
能源动力   2篇
轻工业   1篇
石油天然气   5篇
无线电   10篇
一般工业技术   29篇
冶金工业   5篇
原子能技术   1篇
自动化技术   11篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2017年   5篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   12篇
  2012年   4篇
  2011年   8篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   3篇
  1959年   1篇
  1956年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
81.
In this paper, electrostatically configurable 2D tungsten diselenide (WSe2) electronic devices are demonstrated. Utilizing a novel triple‐gate design, a WSe2 device is able to operate as a tunneling field‐effect transistor (TFET), a metal–oxide–semiconductor field‐effect transistor (MOSFET) as well as a diode, by electrostatically tuning the channel doping to the desired profile. The implementation of scaled gate dielectric and gate electrode spacing enables higher band‐to‐band tunneling transmission with the best observed subthreshold swing (SS) among all reported homojunction TFETs on 2D materials. Self‐consistent full‐band atomistic quantum transport simulations quantitatively agree with electrical measurements of both the MOSFET and TFET and suggest that scaling gate oxide below 3 nm is necessary to achieve sub‐60 mV dec?1 SS, while further improvement can be obtained by optimizing the spacers. Diode operation is also demonstrated with the best ideality factor of 1.5, owing to the enhanced electrostatic control compared to previous reports. This research sheds light on the potential of utilizing electrostatic doping scheme for low‐power electronics and opens a path toward novel designs of field programmable mixed analog/digital circuitry for reconfigurable computing.  相似文献   
82.
This work explains the design and analysis of a triple‐band electrically small (ka = 0.56 < 1) zeroth‐order resonating (ZOR) antenna with wideband circular polarization (CP) characteristics. The antenna compactness is obtained due to ZOR frequency of composite right/left‐handed (CRLH) transmission line (TL) and wideband CP radiation are achieved due to the introduction of single‐split ring resonator and asymmetric coplanar waveguide fed ground plane. The proposed antenna obtains an overall electrical size including the ground plane of 0.124 λ0 × 0.131 λ0 × 0.005 λ0 at 1.58 GHz and physical dimension of 23.7 × 25 × 1 mm3 are achieved. The antenna provides a size reduction of 44.95% compared to a conventional monopole antenna. The novelty behind the ohm‐shaped capacitor is the generation of extra miniaturization with better antenna compactness. The antenna provides dual‐polarized radiation pattern with linear polarization radiation at 1.58 and 3.54 GHz, wideband CP radiation at 5.8 GHz. The antenna measured results shows good impedance bandwidth of 5%, 6.21%, and 57.5% for the three bands centered at 1.58, 3.54, and 5.8 GHz with a wider axial ratio bandwidth (ARBW) of 25.47% is obtained in the third band. The antenna provides a higher level of compactness, wider ARBW, good radiation efficiency, and wider S11 bandwidth. Hence, the proposed antenna is suitable for use in GPS L1 band (1.565‐1.585 GHz), WiMAX 3.5 GHz (3.4‐3.8 GHz) GHz, WLAN 5.2/5.8 GHz (5.15‐5.825 GHz), and C‐band (4‐8 GHz) wireless application systems.  相似文献   
83.
Low Vt Ni fully silicided (FUSI) devices are demonstrated making use of Al implantation for pMOS and Yb or Yb+P implantation for nMOS combined with Ni-silicide phase engineering. When Yb(+P) and Al implantation are followed by a high temperature anneal, significant segregation of Yb or Al toward the Ni-FUSI/SiON interface is observed and large Vt shifts of 450 mV (330 mV) and 200 mV are obtained for nMOS NiSi FUSI/SiON devices and pMOS Ni-rich FUSI/SiON devices, respectively, as compared to the undoped reference devices. The Vt shifts are preserved down to the shortest gate lengths. For both Al and Yb, the Vt shifts are explained by the dopants reacting with and modifying the dielectric. Thus, the low Vt dual implantation approach proposed achieves a low-cost "dual dielectric" implementation without the need of dual deposition of dielectrics or capping layers. In the case of Yb implantation followed by a high temperature anneal, a significant reduction in the inversion dielectric thickness is observed, indicating that the reaction between Yb and SiON results in the formation of a high-k dielectric. The Yb diffusion and reaction at the interface can be engineered using a P coimplant.  相似文献   
84.
A simple and practical technique for the discrete representation of reinforcement in two-dimensional boundary element analysis of reinforced concrete structural elements is presented. The bond developed over the surface of contact between the reinforcing steel and concrete is represented using fictitious one-dimensional spring elements. Potentials of the model developed are demonstrated using a number of numerical examples. The results are seen to be in good agreement with the results obtained using standard finite element software.  相似文献   
85.
A discrete computational approach based on molecular dynamics (MD) simulations is proposed for evaluating the latent heat of vaporization of nanofluids. The computational algorithm, which considers the interaction of the solid and the fluid molecules, is used for obtaining the enhancement of the latent heat of a base fluid due to the suspension of nanoparticles. The method is validated by comparing the computed latent heat values of water with standard values at different saturation temperatures. Simulation of a water–platinum nanofluid system is performed, treating the volume fraction and size of nanoparticles as parameters. The trends in the variation are found to match well with experimental results on nanofluids. Discussions are also presented on the limitations of the proposed model, and on methods to overcome them.  相似文献   
86.
β-Nb2ZnO6 nanoparticles were synthesized by a hydrothermal process and calcined at two temperatures, 500 °C and 700 °C, and assigned as A and B, respectively. X-ray diffraction, together with transmission electron microscopy, revealed that the β-Nb2ZnO6 nanoparticles calcined at 700 °C (B) were more crystalline than the β-Nb2ZnO6 calcined at 500 °C (A) with both types of nanoparticles having an average size of approximately 100 nm. The physiochemical, photocatalytic, and cytotoxic activities of both types of β-Nb2ZnO6 nanoparticles (A and B) were examined. Interestingly, the photodegradation of methyl orange, used as a standard for environmental pollutants, was faster in the presence of the β-Nb2ZnO6 nanoparticles calcined at 500 °C (A) than in the presence of those calcined at 700 °C (B). Moreover, the cytotoxicity was evaluated against different types of cancer cells and the results indicated that both types of β-Nb2ZnO6 nanoparticles (A and B) exhibited high cytotoxicity against MCF-7 and HCT116 cells but low cytotoxicity against HeLa cells after 24 and 48 h of treatment. Overall, both products expressed similar EC50 values on tested cell lines and high cytotoxicity after 72 h of treatment. As a photocatalyst, β-Nb2ZnO6 nanoparticles (A) could be utilized in different applications including the purification of the environment and water from specific pollutants. Further biological studies are required to determine the other potential impacts of utilizing β-Nb2ZnO6 nanoparticles in the biomedical application field.  相似文献   
87.
There are numerous internet-connected devices attached to the industrial process through recent communication technologies, which enable machine-to-machine communication and the sharing of sensitive data through a new technology called the industrial internet of things (IIoTs). Most of the suggested security mechanisms are vulnerable to several cybersecurity threats due to their reliance on cloud-based services, external trusted authorities, and centralized architectures; they have high computation and communication costs, low performance, and are exposed to a single authority of failure and bottleneck. Blockchain technology (BC) is widely adopted in the industrial sector for its valuable features in terms of decentralization, security, and scalability. In our work, we propose a decentralized, scalable, lightweight, trusted and secure private network based on blockchain technology/smart contracts for the overhead circuit breaker of the electrical power grid of the Al-Kufa/Iraq power plant as an industrial application. The proposed scheme offers a double layer of data encryption, device authentication, scalability, high performance, low power consumption, and improves the industry’s operations; provides efficient access control to the sensitive data generated by circuit breaker sensors and helps reduce power wastage. We also address data aggregation operations, which are considered challenging in electric power smart grids. We utilize a multi-chain proof of rapid authentication (McPoRA) as a consensus mechanism, which helps to enhance the computational performance and effectively improve the latency. The advanced reduced instruction set computer (RISC) machines ARM Cortex-M33 microcontroller adopted in our work, is characterized by ultra-low power consumption and high performance, as well as efficiency in terms of real-time cryptographic algorithms such as the elliptic curve digital signature algorithm (ECDSA). This improves the computational execution, increases the implementation speed of the asymmetric cryptographic algorithm and provides data integrity and device authenticity at the perceptual layer. Our experimental results show that the proposed scheme achieves excellent performance, data security, real-time data processing, low power consumption (70.880 mW), and very low memory utilization (2.03% read-only memory (RAM) and 0.9% flash memory) and execution time (0.7424 s) for the cryptographic algorithm. This enables autonomous network reconfiguration on-demand and real-time data processing.  相似文献   
88.
In this paper a new method is proposed to perform the N-Radon orthogonal frequency division multiplexing (OFDM), which are equivalent to 4-quadrature amplitude modulation (QAM), 16-QAM, 64-QAM, 256-QAM, ... etc. in spectral efficiency. This non conventional method is proposed in order to reduce the constellation energy and increase spectral efficiency. The proposed method gives a significant improvement in Bit Error Rate performance, and keeps bandwidth efficiency and spectrum shape as good as conventional Fast Fourier Transform based OFDM. The new structure was tested and compared with conventional OFDM for Additive White Gaussian Noise, flat, and multi-path selective fading channels. Simulation tests were generated for different channels parameters values including multi-path gains vector, multi-path delay time vector, and maximum Doppler shift.  相似文献   
89.
The aim of image denoising is to recover a visually accepted image from its noisy observation with as much detail as possible. The noise exists in computed tomography images due to hardware errors, software faults and/or low radiation dose. Because of noise, the analysis and extraction of accurate medical information is a challenging task for specialists. Therefore, a novel modification on the total variational denoising algorithm is proposed in this article to attenuate the noise from CT images and provide a better visual quality. The newly developed algorithm can properly detect noise from the other image components using four new noise distinguishing coefficients and reduce it using a novel minimization function. Moreover, the proposed algorithm has a fast computation speed, a simple structure, a relatively low computational cost and preserves the small image details while reducing the noise efficiently. Evaluating the performance of the proposed algorithm is achieved through the use of synthetic and real noisy images. Likewise, the synthetic images are appraised by three advanced accuracy methods –Gradient Magnitude Similarity Deviation (GMSD), Structural Similarity (SSIM) and Weighted Signal‐to‐Noise Ratio (WSNR). The empirical results exhibited significant improvement not only in noise reduction but also in preserving the minor image details. Finally, the proposed algorithm provided satisfying results that outperformed all the comparative methods.  相似文献   
90.
Investigation of alternative energy sources is need of current time due to growing power crisis and associated environmental issues. Biodiesel is considered as sustainable power source and promising alternative to fossil fuels. Therefore, our current investigation aimed to identify micromorphological characters of 10 novel nonedible oil-yielding seeds through scanning electron microscopy. It was revealed from light microscopic study that there is variation in seed size from 3 to 15 mm in length and 2 to 11 mm in width. Likewise, a huge variation in color was observed such as light green, greenish yellow, blackish brown, and various shades of brown. Presence and absence of Hilum was observed, and compression of seeds varied from depressed, lateral, and dorsoventral. Seed's shape differs from ovate, clavate, triangular ovate, cuneiform, ovoid, and elliptical shape. Seed oil content fall in range of 18–58% (wt/wt). Free fatty acid content of the seeds varies from 0.3 to 3.1 mg KOH/g. Ultrastructure of seeds exhibited huge variation in shape, size, periclinal wall, anticlinal wall, and surface ornamentation. Nonedible seeds varied in wall structure from angular, wavy, dentate entire, irregular, puzzled, elongated, even, and polygonal. The periclinal wall arrangements show alteration from flat, looped, raised, depressed, lofty, even, pentagonal, polygonal, and undulate seed margins. Outcomes of this investigation recommended that scanning electron microscopy could act as a helpful tool in disclosing the hidden micromorphological characters among nonedible oil-yielding seeds and subsequently helping in correct, authentic seed identification and classification as potential feedstock for biodiesel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号