首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1085篇
  免费   56篇
  国内免费   11篇
电工技术   19篇
综合类   2篇
化学工业   323篇
金属工艺   20篇
机械仪表   41篇
建筑科学   43篇
矿业工程   4篇
能源动力   68篇
轻工业   99篇
水利工程   4篇
石油天然气   40篇
无线电   104篇
一般工业技术   208篇
冶金工业   27篇
原子能技术   20篇
自动化技术   130篇
  2024年   4篇
  2023年   23篇
  2022年   33篇
  2021年   66篇
  2020年   68篇
  2019年   78篇
  2018年   94篇
  2017年   82篇
  2016年   52篇
  2015年   38篇
  2014年   73篇
  2013年   118篇
  2012年   68篇
  2011年   98篇
  2010年   76篇
  2009年   41篇
  2008年   35篇
  2007年   27篇
  2006年   13篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   8篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1987年   2篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有1152条查询结果,搜索用时 0 毫秒
31.
Wastewater sludge usually contains large amounts of water and organic materials; therefore, its stabilization and dewatering are of particular importance. The present study aimed to investigate the possibility of sludge stabilization and dewatering from wastewater sludge by bioleaching (Thiobacillus ferrooxidans), Fenton/bioleaching, and bioleaching/Fenton-like processes. To evaluate sludge stabilization and dewatering, specific resistance to filtration (SRF), volatile suspended solids (VSS), total suspended solids (TSS), and soluble chemical oxygen demand (SCOD) were measured. In biological treatment with T. ferrooxidans with Fe2+ (2?g?L?1), 99.75, 33, 37, and 72% reduction were observed in SRF, VSS, TSS, SCOD, respectively, after 2 days. In the combined treatment of Fenton before bioleaching (including Fe2+ 2?g?L?1 and H2O2 1?g?L?1 with Fenton oxidation for 30?min followed by biological treatment with T. ferrooxidans for 2 days), the reduction rates in TSS, VSS, SCOD, and SRF were 40.18, 40.88, 60.95, and 75.43%, respectively. In treatment with the combined method of bioleaching before Fenton-like oxidation, the removal rates of the aforementioned parameters were 52.5, 54.4, 88, and 99.82%, respectively. In comparison to Fenton oxidation and bioleaching alone, combined biological method of bioleaching/Fenton-like oxidation using a lower dose of H2O2 and Fe2+ significantly improved sludge dewatering and stabilization.  相似文献   
32.
Dehydration of water/1-1-dimethylhydrazine mixtures by zeolite membranes   总被引:3,自引:0,他引:3  
In this research, dehydration of water/1-1-dimethylhydrazine (UDMH) mixtures by zeolite NaA and hydroxy sodalite membranes has been investigated. Support of these membranes has been tubular mullites that have been made by extruding a mixture of about 67–75% kaolin clay and 33–25% distilled water using an extruder. Zeolite NaA and hydroxy sodalite membranes have been coated on the external surface of the porous supports by the hydrothermal synthesis.

UDMH/water mixtures have been separated at ambient temperature and pressure by pervaporation (PV) using these zeolite membranes. These membranes showed very high selectivity of water for all UDMH mixtures. For the UDMH/water mixtures, separation factor as high as 10 000 has been obtained for UDMH feed concentration of 2%. Total mass fluxes of 1.05–0.2 kg/(m2 h) have been also obtained.  相似文献   

33.
Nanoscience and technology (NST) is a relatively new interdisciplinary scientific domain, and scholars from a broad range of different disciplines are contributing to it. However, there is an ambiguity in its structure and in the extent of multidisciplinary scientific collaboration of NST. This paper investigates the multidisciplinary patterns of Iranian research in NST based on a selection of 1,120 ISI??indexed articles published during 1974?C2007. Using text mining techniques, 96 terms were identified as the main terms of the Iranian publications in NST. Then the scientific structure of the Iranian NST was mapped through multidimensional scaling, based upon the co-occurrence of the main terms in the academic publications. The results showed that the NST domain in Iranian publications has a multidisciplinary structure which is composed of different fields, such as pure physics, analytical chemistry, chemistry physics, material science and engineering, polymer science, biochemistry and new emerging topics.  相似文献   
34.
Conventional and gradient CoNiCrAlYSi coatings were produced by using low vacuum plasma spray and an additional step of diffusional over aluminizing (pack cementation) techniques on an Inconel-738 substrate. Hot corrosion of these coatings was investigated using Na2SO4–20wt%NaVO3 molten salt at 880?°C for 800?h. Hot corrosion rate was determined by measuring the weight gain of the specimens at regular intervals for a duration of 20?h. X-ray diffraction, field emission scanning electron microscopy and electron probe micro analysis techniques were used to determine the nature of phases, investigation of the thermally grown oxide, examination of the surface attack and determination of the elemental distribution. The gradient coating showed better performance by re-healing alumina scale due to its possession of more β phase as Al reservoir. Results indicated that pack cementation process caused an increase in amount of aluminum-rich β phase and better hot corrosion properties of gradient coatings owing to the Al enrichment in the outer layer and rapid formation of protective oxide on the surface.  相似文献   
35.
36.
Six mixed matrix membranes (MMMs) were prepared using zeolites of 4A and ZSM-5 incorporated in polyimide of Matrimid 5218. Effects of filler type on membrane morphology and pervaporation performance of MMMs were investigated using isopropanol dehydration. In addition, effects of operating temperature (30, 40, 50, and 60 °C), feed water concentration (10, 20, 30, and 40 wt.%) and permeate side pressure (0 and 15 torr) on pervaporation performance were studied. Scanning electron microscopy (SEM) analysis showed there were good adhesion between the fillers and the polymer matrix. Zeolite 4A has a better contact with the polymer phase and thereby nearly no void is formed in the MMM structure. Pervaporation were performed based on L16 array of Taguchi method for design of experiments. The results showed that the best separation condition is achieved at temperature, feed water concentration, and permeate pressure of 30 °C, 10 wt.% water and 0 torr, respectively. Selectivities of zeolites 4A and ZSM-5 filled MMMs were calculated as 8991 and 3904 compared with 1276 measured for the neat Matrimid 5218 membrane. Permeation rates of the zeolite 4A and ZSM-5 filled MMMs and the neat polymeric membrane were found to be 0.018, 0.016, and 0.013 kg/m2 h, respectively.  相似文献   
37.
This study aims to investigate how the predeposition machining processes such as magnetic grinding, turning machining, and wire electrical discharge machining can influence the surface properties including electrochemical and tribological behavior of TiCrN nanostructured coating applied on Mo40 steel substrate. A physical vapor deposition technique using cathodic arc evaporation was used to apply the coating. The crystallographic phases and the microstructure of the coating were studied by X-ray diffraction and scanning electron microscope, respectively. Rockwell-C, electrochemical impedance spectroscopy and potentiodynamic polarization, and pin-on-disk wear tests were employed to evaluate the adhesion strength, corrosion behavior, and tribological property of specimens, respectively. The electrochemical results after 24 h of exposure to 3.5 wt% NaCl solution showed that TiCrN coating pretreated with a turning process with polarization resistance of about 3525.32 Ω.cm2 had the best corrosion resistance among all specimens. This was because of the improvement of the smoothness, surface quality, and adhesion after the turning process. On the other, the friction coefficient of the grounded sample is less than that of other ones. This is probably due to its higher adhesion strength and higher surface smoothness.  相似文献   
38.
In this study, a predictive model for the separation of gases via a polydimethylsiloxane (PDMS) membrane has been developed. This model takes into account the effects of gas composition and pressure at the membrane surfaces on the gas sorption and diffusion coefficients in the membrane. Computational fluid dynamics (CFD) modeling has been employed in order to predict the behavior of a gas mixture containing C3H8, CH4, and H2 at various operating conditions and three zones (upstream, downstream, and membrane body). Artificial neural network (ANN) modeling has been applied to predict sorption and diffusion coefficients of each component of the gas mixture in the membrane. A procedure of calculation has been applied to combine the CFD modeling and the ANN modeling in order to predict sorption, diffusion, and composition of each component at various sites of the membrane. The results determined using the developed prediction model have been found to be in agreement with those determined using experimental investigations with an average error of 10.21%. POLYM. ENG. SCI., 54:215–226, 2014. © 2013 Society of Plastics Engineers  相似文献   
39.
One of the most important factors for optimizing the plasma focus device operation is the dynamics of the plasma. In this paper, we investigated the profile and dynamics of the current sheath by measuring the velocity and distribution of current sheath in Sahand as a Filippov type plasma focus device. For this purpose, the discharge is produced in pure neon gas with capacitor bank stored energies in the range of 14–50 kJ. The current sheath is monitored using two sets of magnetic probes, one with four and other with three equi-distant probe coils. These probes, installed in both radial and axial directions near the edge of the interior electrode (anode), are used for monitoring the distributions and dynamics of the current sheath. The maximum current sheath velocities at radial and axial phase are 4 ± 0.13 and 3.51 ± 0.22 (cm/μs) respectively for 0.25 Torr. The decreasing of CS velocities in going move away from anode surface is one of the our results in this paper. In this paper we conclude that the current sheath velocity at radial phase in Sahand is greater than axial phase. The effect of the neon working gas pressure and working voltage on the current sheath dynamics and its spatial evolution is investigated and presented.  相似文献   
40.
In this work, the effects of three ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium dicyanamide and tetraethyl-ammonium chloride, on methane hydrate formation and dissociation kinetic parameters were studied. The kinetic parameters including the initial rate of hydrate formation, hydrate stability at atmospheric pressure and hydrate storage capacity were evaluated. The experimental measurements were performed in an initial pressure range of 3.5–7.1 MPa. It was found that both of ILs with imidazolium-based cation increase the initial methane hydrate formation rate while the IL with ammonium-based cation leads to a decrease in the initial methane hydrate formation rate. It was also interpreted from the results that all of the three studied ILs decrease methane hydrate stability at atmospheric pressure and increase methane hydrate storage capacity. Finally, both of ILs with imidazolium-based cations were found to have higher impacts on decreasing hydrate stability at atmospheric pressure and increasing the methane hydrate storage capacity than the applied IL with ammonium-based cation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号