首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7247篇
  免费   417篇
  国内免费   6篇
电工技术   114篇
综合类   28篇
化学工业   1987篇
金属工艺   184篇
机械仪表   161篇
建筑科学   431篇
矿业工程   40篇
能源动力   247篇
轻工业   499篇
水利工程   43篇
石油天然气   5篇
无线电   675篇
一般工业技术   1522篇
冶金工业   361篇
原子能技术   38篇
自动化技术   1335篇
  2024年   14篇
  2023年   104篇
  2022年   160篇
  2021年   278篇
  2020年   189篇
  2019年   194篇
  2018年   193篇
  2017年   193篇
  2016年   290篇
  2015年   304篇
  2014年   357篇
  2013年   514篇
  2012年   481篇
  2011年   639篇
  2010年   416篇
  2009年   426篇
  2008年   424篇
  2007年   371篇
  2006年   283篇
  2005年   254篇
  2004年   199篇
  2003年   160篇
  2002年   162篇
  2001年   82篇
  2000年   109篇
  1999年   107篇
  1998年   126篇
  1997年   106篇
  1996年   102篇
  1995年   67篇
  1994年   53篇
  1993年   52篇
  1992年   48篇
  1991年   36篇
  1990年   24篇
  1989年   14篇
  1988年   16篇
  1987年   17篇
  1986年   12篇
  1985年   13篇
  1984年   8篇
  1983年   10篇
  1982年   5篇
  1981年   7篇
  1980年   10篇
  1979年   4篇
  1977年   4篇
  1976年   8篇
  1975年   4篇
  1972年   4篇
排序方式: 共有7670条查询结果,搜索用时 15 毫秒
81.
Improvement of the interface contact between biological objects and electronic devices can significantly enhance the quality of electronic signal transfer. The surface of biosensor can be artificially modified in order to strengthen the adhesion of biological cells. We report on results of fabrication of micron and submicron golden spines by means of e-beam lithography and electroplating. The fabrication technique allows easy modification of the size and shape of golden spines by variation of processing parameters. The structures with different spine profiles and spacing have been fabricated for optimization of cell growth conditions. We present the results of growth of rat cortical neurons on the surface of spine modified samples. Well-defined cell guidance was established at the spine arrays. Furthermore, the results of transmission electron microscope and focused ion beam technique confirm the good adhesion between the spines and cell structures.  相似文献   
82.
Managing the interference effects from thin (multi‐)layers allows for the control of the optical transmittance/reflectance of widely used and technologically significant structures such as antireflection coatings (ARCs) and distributed Bragg reflectors (DBRs). These rely on the destructive/constructive interference between incident, reflected, and transmitted radiation. While known for over a century and having been extremely well investigated, the emergence of printable and large‐area electronics brings a new emphasis: the development of materials capable of transferring well‐established ideas to a solution‐based production. Here, demonstrated is the solution‐fabrication of ARCs and DBRs utilizing alternating layers of commodity plastics and recently developed organic/inorganic hybrid materials comprised of poly(vinyl alcohol) (PVAl), cross‐linked with titanium oxide hydrates. Dip‐coated ARCs exhibit an 88% reduction in reflectance across the visible compared to uncoated glass, and fully solution‐coated DBRs provide a reflection of >99% across a 100 nm spectral band in the visible region. Detailed comparisons with transfermatrix methods (TMM) highlight their excellent optical quality including extremely low optical losses. Beneficially, when exposed to elevated temperatures, the hybrid material can display a notable, reproducible, and irreversible change in refractive index and film thickness while maintaining excellent optical performance allowing postdeposition tuning, e.g., for thermo‐responsive applications, including security features and product‐storage environment monitoring.  相似文献   
83.
The degree of charge transfer in thin films of organic charge transfer (CT)-complexes, which are deposited via thermal evaporation, is examined via infrared-spectroscopy. We demonstrate a linear relationship between the shift in the excitation energy of the CN-stretching mode of CT-complexes with the acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and the charge transfer. The measured correlation corresponds very well with DFT calculations. For Na-TCNQ we observe a splitting in the peak of the CN-stretching mode, which can be explained by the coupling of two modes and was confirmed by the calculations. In CT-complexes with partial charge transfer the appearance of an electronic excitation is demonstrated.  相似文献   
84.
In this study the charge dissociation at the donor/acceptor heterointerface of thermally evaporated planar heterojunction merocyanine/C60 organic solar cells is investigated. Deposition of the donor material on a heated substrate as well as post‐annealing of the complete devices at temperatures above the glass transition temperature of the donor material results in a twofold increase of the fill factor. An analytical model employing an electric‐field‐dependent exciton dissociation mechanism reveals that geminate recombination is limiting the performance of as‐deposited cells. Fourier‐transform infrared ellipsometry shows that, at temperatures above the glass transition temperature of the donor material, the orientation of the dye molecules in the donor films undergoes changes upon annealing. Based on this finding, the influence of the dye molecules’ orientations on the charge‐transfer state energies is calculated by quantum mechanical/molecular mechanics methods. The results of these detailed studies provide new insight into the exciton dissociation process in organic photovoltaic devices, and thus valuable guidelines for designing new donor materials.  相似文献   
85.
Waste heat recovery—for example, in automotive applications—is a major field for thermoelectric research and future application. Commercially available thermoelectric modules are based on planar structures, whereas tubular modules may have advantages for integration and performance in the field of automotive waste heat recovery. One major drawback of tubular generator designs is the necessity for ring-shaped legs made from thermoelectric material. Cutting these geometries from sintered tablets leads to considerable loss of thermoelectric material and therefore high cost. Direct sintering of ring-shaped legs or tubes of thermoelectric material is a solution to this problem. However, sintering such rings with high homogeneity and density faces some difficulties related to the mechanical properties of typical thermoelectric materials such as lead telluride (PbTe)—particularly brittleness and high coefficient of thermal expansion. This work shows a process for production of thermoelectric rings made of p- and n-doped PbTe. Long tubes of PbTe have been sintered in a current-assisted sintering process with specially designed sintering molds, coated with a diffusion barrier, and finally cut into ring-shaped slices. To demonstrate the technology, a tubular thermoelectric module has been assembled using these PbTe rings.  相似文献   
86.
We report on two generations of CMOS image sensors with digital output fabricated in a 0.6 μm CMOS process. The imagers embed an ALOHA MAC interface for unfettered self-timed pixel read-out targeted to energy-aware sensor network applications. Collision on the output is monitored using contention detector circuits. The image sensors present very high dynamic range and ultra-low power operation. This characteristics allow the sensor to operate in different lighting conditions and for years on the sensor network node power budget. Eugenio Culurciello (S’97–M’99) received the Ph.D. degree in Electrical and Computer Engineering in 2004 from Johns Hopkins University, Baltimore, MD. In July 2004 he joined the department of Electrical Engineering at Yale University, where he is currently an assistant professor. He founded and instrumented the E-Lab laboratory in 2004. His research interest is in analog and mixed-mode integrated circuits for biomedical applications, sensors and networks, biological sensors, Silicon on Insulator design and bio-inspired systems. Andreas G. Andreou received his Ph.D. in electrical engineering and computer science in 1986 from Johns Hopkins University. Between 1986 and 1989 he held post-doctoral fellow and associate research scientist positions in the Electrical and Computer engineering department while also a member of the professional staff at the Johns Hopkins Applied Physics Laboratory. Andreou became an assistant professor of Electrical and Computer engineering in 1989, associate professor in 1993 and professor in 1996. He is also a professor of Computer Science and of the Whitaker Biomedical Engineering Institute and director of the Institute’s Fabrication and Lithography Facility in Clark Hall. He is the co-founder of the Johns Hopkins University Center for Language and Speech Processing. Between 2001 and 2003 he was the founding director of the ABET accredited undergraduate Computer Engineering program. In 1996 and 1997 he was a visiting professor of the computation and neural systems program at the California Institute of Technology. In 1989 and 1991 he was awarded the R.W. Hart Prize for his work on mixed analog/digital integrated circuits for space applications. He is the recipient of the 1995 and 1997 Myril B. Reed Best Paper Award and the 2000 IEEE Circuits and Systems Society, Darlington Best Paper Award. During the summer of 2001 he was a visiting professor in the department of systems engineering and machine intelligence at Tohoku University. In 2006, Prof. Andreou was elected as an IEEE Fellow and a distinguished lecturer of the IEEE EDS society. Andreou’s research interests include sensors, micropower electronics, heterogeneous microsystems, and information processing in biological systems. He is a co-editor of the IEEE Press book: Low-Voltage/Low-Power Integrated Circuits and Systems, 1998 (translated in Japanese) and the Kluwer Academic Publishers book: Adaptive Resonance Theory Microchips, 1998. He is an associate editor of IEEE Transactions on Circuits and Systems I.  相似文献   
87.
Bioinspired nanocomposites with high levels of reinforcement hold great promise for future, green lightweight, and functional engineering materials, but they suffer from slow, tedious, and nonscalable preparation routes, that typically only lead to very thin films. A rapid and facile dry powder processing technique is introduced to generate bioinspired nanocomposite materials at high fractions of reinforcements (50 wt%) and with millimeter scale thickness. The process uses powder drying of vitrimer-coated nanoplatelets (nanoclay and MXene) from aqueous solution and subsequent hot-pressing. As a method of choice in industrial lightweight composite materials engineering, hot-pressing underscores a high potential to translate this approach to actual products. The use of the vitrimer chemistry with temperature-activated bond shuffling is important to facilitate smooth integration into the nanocomposite design, leading to layered nacre-inspired nanocomposites with nanoscale hard/soft order traced by X-ray diffraction and excellent mechanical properties investigated using flexural tests. Recycling by grinding and hot-pressing is possible without property loss. The compatibility with existing composite processing techniques, scalable thickness and dimensions, and recyclability open considerable opportunities for translating bioinspired nanocomposites to real-life applications.  相似文献   
88.
Ultranarrowband organic photodiodes (OPDs) are demonstrated for thin film solid state materials composed of tightly packed dipolar merocyanine dyes. For these dyes the packing arrangement can be controlled by the bulkiness of the donor substituent, leading to either strong H‐ or strong J‐type exciton coupling in the interesting blue (H‐aggregate) and NIR (J‐aggregate) spectral ranges. Both bands are shown to arise from one single exciton band according to fluorescence measurements and are not just a mere consequence of different polymorphs within the same thin film. By fabrication of organic thin‐film transistors, these dyes are demonstrated to exhibit hole transport behavior in spin‐coated thin films. Moreover, when used as organic photodiodes in planar heterojunctions with C60 fullerene, they show wavelength‐selective photocurrents in the solid state with maximum external quantum efficiencies of up to 11% and ultranarrow bandwidths down to 30 nm. Thereby, narrowing the linewidths of optoelectronic functional materials by exciton coupling provides a powerful approach to produce ultranarrowband organic photodiodes.  相似文献   
89.
Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles. The functionalization of the magnetite nanoparticles with a self‐assembled monolayer of hexadecylphosphonic acid renders the nanoparticles oleophilic and the magnetic nature of magnetite allows for simple extraction of the hydrocarbon‐soaked sorbent. The sorbent material is capable of extracting single contaminants such as alkanes and aromatics and complex hydrocarbon mixtures such as crude oils in high extraction rates of up to 14 times the sorbent volume. Experimental results are explained by molecular dynamics simulations on the adsorption of single components from a hydrocarbon‐water mixture to the alkylphosphonic acid layer on the nanoparticles. The core–shell sorbent material is highly stable and therefore, reusable over several successive extraction cycles without degradation. The extraction performance is determined at different water temperatures, different water sources, and different magnetic core materials and evaluated compared to heptadecanoic acid functionalized magnetite. The new sorbent material provides the opportunity for an efficient, reliable, inexpensive, and environmental friendly removal of hydrocarbons from water.  相似文献   
90.
Buried‐channel semiconductor heterostructures are an archetype material platform for the fabrication of gated semiconductor quantum devices. Sharp confinement potential is obtained by positioning the channel near the surface; however, nearby surface states degrade the electrical properties of the starting material. Here, a 2D hole gas of high mobility (5 × 105 cm2 V?1 s?1) is demonstrated in a very shallow strained germanium (Ge) channel, which is located only 22 nm below the surface. The top‐gate of a dopant‐less field effect transistor controls the channel carrier density confined in an undoped Ge/SiGe heterostructure with reduced background contamination, sharp interfaces, and high uniformity. The high mobility leads to mean free paths ≈ 6 µm, setting new benchmarks for holes in shallow field effect transistors. The high mobility, along with a percolation density of 1.2 × 1011cm?2, light effective mass (0.09me), and high effective g‐factor (up to 9.2) highlight the potential of undoped Ge/SiGe as a low‐disorder material platform for hybrid quantum technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号