首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   20篇
  国内免费   3篇
电工技术   3篇
化学工业   165篇
金属工艺   6篇
机械仪表   10篇
建筑科学   9篇
能源动力   43篇
轻工业   40篇
水利工程   1篇
石油天然气   2篇
无线电   40篇
一般工业技术   111篇
冶金工业   17篇
原子能技术   2篇
自动化技术   55篇
  2024年   2篇
  2023年   13篇
  2022年   27篇
  2021年   36篇
  2020年   38篇
  2019年   29篇
  2018年   36篇
  2017年   39篇
  2016年   41篇
  2015年   26篇
  2014年   15篇
  2013年   32篇
  2012年   16篇
  2011年   18篇
  2010年   18篇
  2009年   27篇
  2008年   25篇
  2007年   13篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1968年   1篇
排序方式: 共有504条查询结果,搜索用时 312 毫秒
91.
Lactic acid bacteria isolated from camel milk exhibit remarkable probiotic and exopolysaccharide (EPS)-producing characteristics. The health-promoting benefits of exopolysaccharide-producing probiotic Lactobacillus plantarum isolated from camel milk used for making low-fat akawi cheese were investigated. Three low-fat akawi cheeses were made using traditional culture (non-EPS-producing, EPS?), commercial EPS-producing (MEPS+), and camel milk EPS-producing (CEPS+) cultures. α-Amylase and α-glucosidase inhibitory activities, antioxidant activities, angiotensin-converting enzyme (ACE) inhibition, and antiproliferative activity were determined. Cheese made with CEPS+ culture exhibited comparable α-amylase inhibition to that of cheeses made with MEPS+. Scavenging rates of cheese made with EPS+ cultures were higher than those of cheese made with EPS? cultures. The percentage of α-glucosidase inhibition ranged from >45% at 0 d to ~55% at 21 d of storage. After 7 d of storage, the scavenging rate in CEPS+ cheese increased >60% by ABTS assay [2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid)] and >20% by DPPH assay (1,1-diphenyl-2-picrylhydrazyl). Throughout storage, cheese made with EPS+ cultures showed higher ACE-inhibition activity compared with EPS? cultures. Cheese made with CEPS+ showed ACE inhibition >70% after 7 d of storage. Antiproliferation activity of CEPS+ cheese increased from 38 to 48% during 7 d of storage and was maintained above 45% with prolonged storage. Low-fat akawi cheese produced with these cultures exhibited similar or greater health-promoting benefits compared with cheese made using commercial starter cultures. Therefore, incorporation of these cultures in food is promising for commercial uses.  相似文献   
92.
The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [0 m /90 n ] s , angle-ply [±θ] ns , [90/±θ] ns and [0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai–Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.  相似文献   
93.
Nishar Hameed 《Polymer》2008,49(24):5268-5275
Nanostructured poly(?-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.  相似文献   
94.
Directional antennas offer many potential advantages for wireless networks such as increased network capacity, extended transmission range and reduced energy consumption. Exploiting these advantages requires new protocols and mechanisms at various communication layers to intelligently control the directional antenna system. With directional antennas, many trivial mechanisms, such as neighbor discovery, become challenging since communicating parties must agree on where and when to point their directional beams to communicate.In this paper, we propose a fully directional neighbor discovery protocol called Sectored-Antenna Neighbor Discovery (SAND) protocol. SAND is designed for sectored-antennas, a low-cost and simple realization of directional antennas, that utilize multiple limited beamwidth antennas. Unlike many proposed directional neighbor discovery protocols, SAND depends neither on omnidirectional antennas nor on time synchronization. SAND performs neighbor discovery in a serialized fashion allowing individual nodes to discover all potential neighbors within a predetermined time. SAND guarantees the discovery of the best sector combination at both ends of a link, resulting in more robust and higher quality links between nodes. Finally, SAND reliably gathers the neighborhood information in a centralized location, if needed, to be used by centralized networking protocols. The effectiveness of SAND has been assessed via simulation studies and real hardware implementation.  相似文献   
95.
This contribution presents an effective and practical three dimensional (3D) numerical model to predict the behaviour of concrete matrix reinforced with sliding metallic fibers. Considering fiber-reinforced concrete (FRC) as two-phase composite, constitutive behaviour laws of plain concrete and sliding metallic fibers were described first and then they were combined according to anisotropic damage theory to predict the mechanical behaviour of FRC. The behaviour law used for the plain concrete is based on damage and plasticity theories able to manage localized crack opening in 3D. The constitutive law of the action of sliding metallic fibers in the matrix is based on the effective stress carried by the fibers. This effective stress depends on a damage parameter related to on one hand, on the content and mechanical properties of fibers and on the other hand, on the fiber–matrix bond which itself depends on the localized crack opening. The proposed model for FRC is easy to implement in most of the finite element codes based on displacement formulation; it uses only measurable parameters like Young’s modulus, tensile and compressive strengths, fracture energies and strains at peak stress in tension and compression. A comparison between the experimental data and model results has been also provided in this paper.  相似文献   
96.
Experimental studies have been performed to investigate the flame structure and laminar burning speed of JP-8/oxidizer/diluent premixed flames at high temperatures and pressures. Three different diluents including argon, helium, and a mixture of 14% CO2 and 86% N2 (extra diluent gases), were used. The experiments were carried out in two constant volume spherical and cylindrical vessels. Laminar burning speeds were measured using a thermodynamics model based on the pressure rise method. Temperatures from 493 to 700 K and pressures from 1 to 11.5 atm were investigated. Extra diluent gases (EDG) decrease the laminar burning speeds but do not greatly impact the stability of the flame compared to JP-8/air. Replacing nitrogen in the air with argon and helium increases the range of temperature and pressure in the experiments. Helium as a diluent also increases the temperature and pressure range of stable flame as well as the laminar burning speed. Power law correlations have been developed for laminar burning speeds of JP-8/air/EDG and JP-8/oxygen/helium mixtures at a temperature range of 493-700 K and a pressure range of 1-10 atm for lean mixtures.  相似文献   
97.
ABSTRACT

An experimental investigation was carried out to determine the effect of binders and loading pressures on burning performance of B/BaCrO4 and Si/PbO/Pb3O4 delay compositions. The consolidated density and percent theoretical maximum density (%TMD) of these compositions were also studied with different binders and at multiple loading pressures. Carboxyl methyl cellulose (CMC), dextrin, and fish glue with varying wt. % were used as binders. It was observed that the burning rate of these delay compositions was inversely proportional to the binder content. The burning rate of B/BaCrO4 delay composition was 71.0 mm/s without binder. The burning rate decreased to 38.1 mm/s by adding 3.0 % fish glue. When 1.0 % CMC was added to the mixture, the burning rate decreased to 61.8 mm/s. By adding 3.0 % dextrin to the delay composition, the burning rate decreased to 38.2 mm/s. The burning rate of Si/PbO/Pb3O4 delay mixture was 38.6 mm/s without binder. The burning of this mixture decreased to 16.4 mm/s by adding 1.0 % fish glue. The loading pressures were varied from 103 to 414 MPa. The effect of loading pressures on the burning rate of both the delay compositions was marginal. The burning rate of B/BaCrO4 delay mixture decreased with the increase in loading pressure. On contrary, the change in burning rate of Si/PbO/Pb3O4 pyrotechnic delay composition was minimal by varying the loading pressures. Results also revealed that loading pressures of 345 and 348 MPa produced the minimum standard deviation in burning rate of B/BaCrO4 and Si/PbO/Pb3O4 compositions. The consolidated density and %TMD of both mixtures increased by adding binders and increasing the loading pressures.  相似文献   
98.
The development of drug resistance remains a critical problem for current HIV‐1 antiviral therapies, creating a need for new inhibitors of HIV‐1 replication. We previously reported on a novel anti‐HIV‐1 compound, N2‐(phenoxyacetyl)‐N‐[4‐(1‐piperidinylcarbonyl)benzyl]glycinamide ( 14 ), that binds to the highly conserved phosphatidylinositol (4,5)‐bisphosphate (PI(4,5)P2) binding pocket of the HIV‐1 matrix (MA) protein. In this study, we re‐evaluate the hits from the virtual screen used to identify compound 14 and test them directly in an HIV‐1 replication assay using primary human peripheral blood mononuclear cells. This study resulted in the identification of three new compounds with antiviral activity; 2‐(4‐{[3‐(4‐fluorophenyl)‐1,2,4‐oxadiazol‐5‐yl]methyl})‐1‐piperazinyl)‐N‐(4‐methylphenyl)acetamide ( 7 ), 3‐(2‐ethoxyphenyl)‐5‐[[4‐(4‐nitrophenyl)piperazin‐1‐yl]methyl]‐1,2,4‐oxadiazole ( 17 ), and N‐[4‐ethoxy‐3‐(1‐piperidinylsulfonyl)phenyl]‐2‐(imidazo[2,1‐b][1,3]thiazol‐6‐yl)acetamide ( 18 ), with compound 7 being the most potent of these hits. Mechanistic studies on 7 demonstrated that it directly interacts with and functions through HIV‐1 MA. In accordance with our drug target, compound 7 competes with PI(4,5)P2 for MA binding and, as a result, diminishes the production of new virus. Mutation of residues within the PI(4,5)P2 binding site of MA decreased the antiviral effect of compound 7 . Additionally, compound 7 displays a broadly neutralizing anti‐HIV activity, with IC50 values of 7.5–15.6 μM for the group M isolates tested. Taken together, these results point towards a novel chemical probe that can be used to more closely study the biological role of MA and could, through further optimization, lead to a new class of anti‐HIV‐1 therapeutics.  相似文献   
99.
Silver nanoparticles of mean size 16 nm were synthesized by inert gas condensation (IGC) method. Crystalline structure, morphology and nanoparticles size estimation were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Antibacterial activity of these silver nanoparticles as a function of particles concentration against gram-negative bacterium Escherichia coli (E. coli) was carried out in liquid as well as solid growth media. Scanning electron microscopy (SEM) and TEM studies showed that silver nanoparticles after interaction with E.coli have adhered to and penetrated into the bacterial cells. Antibacterial properties of silver nanoparticles are attributed to their total surface area, as a larger surface to volume ratio of nanoparticles provides more efficient means for enhanced antibacterial activity.  相似文献   
100.
This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol–gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号