首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   36篇
电工技术   2篇
化学工业   186篇
金属工艺   9篇
机械仪表   10篇
建筑科学   17篇
矿业工程   2篇
能源动力   25篇
轻工业   122篇
水利工程   2篇
无线电   12篇
一般工业技术   93篇
冶金工业   44篇
原子能技术   1篇
自动化技术   39篇
  2024年   4篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   12篇
  2019年   20篇
  2018年   14篇
  2017年   20篇
  2016年   25篇
  2015年   15篇
  2014年   31篇
  2013年   45篇
  2012年   39篇
  2011年   42篇
  2010年   38篇
  2009年   29篇
  2008年   19篇
  2007年   26篇
  2006年   21篇
  2005年   8篇
  2004年   13篇
  2003年   19篇
  2002年   10篇
  2001年   5篇
  2000年   10篇
  1999年   12篇
  1998年   8篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   8篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1981年   3篇
  1970年   1篇
排序方式: 共有564条查询结果,搜索用时 15 毫秒
21.
22.
The role of soluble and insoluble aggregates induced by soy protein isolate (SPI) processing in the gelling properties of myofibrillar protein (MP) was studied. Incorporating soluble SPI aggregate could greatly improve (< 0.05) the elastic modulus (G’) and water‐holding capacity (WHC) of MP gel, but had no notable effect on MP gel strength. In contrast, incorporating the insoluble SPI aggregate significantly enhanced the G’, strength and WHC of MP gel, although the improvement in WHC was smaller than that produced by the soluble aggregate. The results of environmental scanning electron microscopy showed that the soluble SPI aggregate induced a less randomly composite gel structure, which may explain its notable enhancement of WHC. However, the insoluble SPI aggregate appeared to be granules embedded in the continuous MP gel matrix, which may be related to the reinforcement of gel strength. Hence, the results of this study suggest further means of processing commercial SPI for use in meat products.  相似文献   
23.
The effect of carbon nanofiber on the thermal behavior of poly(ethylene‐co‐propylene) (PEP) as revealed by differential scanning calorimetry and thermogravimetric analysis is reported. Analysis showed faster crystallization of PEP at higher temperature upon cooling with the increase of carbon nanofiber (CNF) content. The crystallization behavior changed to a single narrow crystallization peak as compared with the broad double crystallization peak of the neat polymer. This demonstrates the nucleation ability of CNF to induce crystals with more uniform distribution. The modified‐Avrami approach was used to study the crystallization behavior. We found that the crystallization rate constant increased with addition of CNFs. The dimensionality of crystal growth was found not to depend significantly on the content of CNF. Thermal degradation in air was monitored using thermogravimetric analysis and observed that the incorporation of nanofiber greater than 2.4 vol% improves thermal stability of PEP. All these results indicate that CNFs can significantly help polymer processing and increase thermal stability of polymers. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   
24.
25.
High‐pressure microfluidisation (HPM) pretreatment was applied to increase in vitro antihypertensive activity of peanut peptide fractions (PPF). The morphology of protein in aqueous dispersion revealed that peanut protein isolate (PPI) disaggregated at relatively low pressure (≤120 MPa) and re‐aggregated at relatively high pressures (150–210 MPa). The treated pressure of 120 MPa could lead to the most disaggregation of PPI. Small peptides contents, trichloroacetic acid‐nitrogen soluble index (TCA‐NSI) and degree of hydrolysis (DH) of peanut protein hydrolysates (PPH) all reached the highest at 120 MPa. Consequently, it possessed the highest angiotensin converting enzyme (ACE) and renin inhibitory activity. The highest surface hydrophobicity occurred at 120 MPa pretreatment samples. Thirty‐nine oligopeptides at 120 MPa pretreatment were identified by ultra‐performance liquid chromatography‐quadrupole time‐of‐flight (UPLC‐Q‐TOF) mass spectrometer combined with Progenesis QI for Proteomics software compared with 29 and 35 at control and 210 MPa, respectively. This meant that disaggregation of PPI at 120 MPa resulted in the release of new hydrophobic peptide.  相似文献   
26.
Burdock cube samples were dried using hot air and microwave pulsed spouted bed drying (MPSBD). Hot air drying was carried out at three temperatures (70, 80, and 90°C). MPSBD was carried out at three microwave power levels (1.0, 2.0, and 3.0 W/g). The results showed that MPSBD samples dried at 2.0 W/g for 30 min and at 1.0 W/g for 40 min had desirable color, flavor, and textural attributes. Gas chromatography–mass spectrometry results showed that the samples dried using MPSBD were richer in flavor compounds, especially in esters, compared to the hot air–dried samples.  相似文献   
27.
Aspergillus species are ubiquitous environmental moulds, with spores inhaled daily by most humans. Immunocompromised hosts can develop an invasive infection resulting in high mortality. There is, therefore, a pressing need for host-centric therapeutics for this infection. To address it, we created a multi-scale computational model of the infection, focused on its interaction with the innate immune system and iron, a critical nutrient for the pathogen. The model, parameterized using published data, was found to recapitulate a wide range of biological features and was experimentally validated in vivo. Conidial swelling was identified as critical in fungal strains with high growth, whereas the siderophore secretion rate seems to be an essential prerequisite for the establishment of the infection in low-growth strains. In immunocompetent hosts, high growth, high swelling probability and impaired leucocyte activation lead to a high conidial germination rate. Similarly, in neutropenic hosts, high fungal growth was achieved through synergy between high growth rate, high swelling probability, slow leucocyte activation and high siderophore secretion. In summary, the model reveals a small set of parameters related to fungal growth, iron acquisition and leucocyte activation as critical determinants of the fate of the infection.  相似文献   
28.
The mode of adsorption of oleic acid (OA) (0.05 M), triglyceride (TG) (0.05 M) and phosphatidylcholine (PC) (0.5 mM) from hexane solution onto 0.5 g of an acid-activated bleaching clay was investigated using diffuse reflectance Fourier transform infrared spectroscopy. OA was mostly weakly adsorbed by bound water, with some OA adsorbed to silanol sites through carboxyl carbonyl groups. TG was hydrogen- bonded to surface silanol groups through ester carbonyl groups. The CH2 stretches indicated that TG was oriented perpendicular or at an angle to the surface. PC phosphate groups were bound by the surface moisture with little interaction with silanol groups. The adsorption mechanism of these lipids contrasts with the adsorption of carotenoid and chlorophyll under the same conditions. These pigments are bound by chemisorption, with catalytic modification often occurring before adsorption.  相似文献   
29.
Noble metal (Rh, Pt, Pd, Ir, Ru, and Ag) and Ni catalysts supported on CeO2–Al2O3 were investigated for water gas shift reaction at ultrahigh temperatures. Pt/CeO2–Al2O3 and Ru/CeO2–Al2O3 demonstrated as the best catalysts in terms of activity, hydrogen yield and hydrogen selectivity. At 700 °C and steam to CO ratio of 5.2:1, Pt/CeO2–Al2O3 converted 76.3% of CO with 94.7% of hydrogen selectivity. At the same conditions, the activity and hydrogen selectivity for Ru/CeO2–Al2O3 were 63.9% and 85.6%, respectively. Both catalysts showed a good stability over 9 h of continuous operation. However, both catalysts showed slight deactivation during the test period. The study revealed that Pt/CeO2–Al2O3 and Ru/CeO2–Al2O3 were excellent ultrahigh temperature water gas shift catalysts, which can be coupled with biomass gasification in a downstream reactor.  相似文献   
30.
This study evaluated the efficacy of ultrasound treatment and nano-zinc oxide (ZnO) coating individually and in combination in preserving the quality of fresh-cut kiwifruit. The nano-ZnO coating solution was prepared by mixing the ZnO nanoparticles in premixed chitosan–acetic acid solution. The fresh-cut kiwifruit were dipped in NaClO solution (50 μL?L?1 sodium, control), subjected to ultrasound treatment (40 KHz, 350 W, 10 min), or coated with nano-ZnO solution. The fresh-cut kiwifruit samples were also subjected to combined ultrasound treatment and nano-ZnO coating. All of these test samples were stored at 4 °C for 10 days. The effects of these treatments on the quality parameters such as the production of carbon dioxide and ethylene, mass loss, and flesh firmness were investigated. At the end of storage, the combination treatments with ultrasound treatment at 40 KHz with 1.2 g?L?1 nano-ZnO coating showed lower production of ethylene (1.86 μL?kg?1?h?1) and carbon dioxide (10.01 mg?kg?1?h?1), water loss (0.46 %), and texture (7.87 N). Hence, it was concluded that the combination of ultrasound treatment with nano-ZnO coating is a promising approach to extend the shelf-life of fresh-cut kiwifruit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号