首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200439篇
  免费   18350篇
  国内免费   9916篇
电工技术   13164篇
技术理论   14篇
综合类   13749篇
化学工业   32040篇
金属工艺   11451篇
机械仪表   13023篇
建筑科学   15576篇
矿业工程   6215篇
能源动力   5908篇
轻工业   14126篇
水利工程   3917篇
石油天然气   11588篇
武器工业   1769篇
无线电   24075篇
一般工业技术   23220篇
冶金工业   9398篇
原子能技术   2336篇
自动化技术   27136篇
  2024年   796篇
  2023年   3506篇
  2022年   6607篇
  2021年   9351篇
  2020年   6932篇
  2019年   5484篇
  2018年   6231篇
  2017年   6978篇
  2016年   6246篇
  2015年   8562篇
  2014年   10600篇
  2013年   12716篇
  2012年   14048篇
  2011年   14778篇
  2010年   12771篇
  2009年   12093篇
  2008年   11719篇
  2007年   10818篇
  2006年   10812篇
  2005年   9220篇
  2004年   6243篇
  2003年   5198篇
  2002年   4796篇
  2001年   4240篇
  2000年   4024篇
  1999年   4468篇
  1998年   3624篇
  1997年   3067篇
  1996年   2845篇
  1995年   2296篇
  1994年   1847篇
  1993年   1321篇
  1992年   1079篇
  1991年   798篇
  1990年   586篇
  1989年   477篇
  1988年   377篇
  1987年   244篇
  1986年   202篇
  1985年   125篇
  1984年   109篇
  1983年   79篇
  1982年   83篇
  1981年   68篇
  1980年   66篇
  1979年   32篇
  1978年   25篇
  1977年   26篇
  1976年   29篇
  1975年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
随着汽车事故的增加,且小重叠碰撞事故死亡率居高不下,小偏置碰撞试验逐渐成为焦点。基于IIHS公布的最新车辆碰撞试验结果,统计超过100余款不同类型的25%小偏置碰撞车辆,建立碰撞转角与碰撞区域的数学模型,将25%小偏置碰撞归结为三种不同的碰撞策略,分别是吸能策略、掠过策略和掠过与吸能策略;并进行试验验证,对三种策略的优缺点进行分析。结果表明,小偏置碰撞试验可运用合理的碰撞策略达到法规要求,对25%小偏置碰撞试验具有一定的参考价值。  相似文献   
13.
Sun  Junli  Wang  Huaibin  Li  Yang  Zhao  Min 《Journal of Porous Materials》2021,28(3):889-894
Journal of Porous Materials - Co3O4 has been widely investigated as a promising candidate anode material for lithium-ion batteries. We report on the porous Co3O4 column synthesized via a simple...  相似文献   
14.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
15.
Indium Tin Oxide (ITO) films were prepared, at room temperature, on a fluorphlogopite substrate using magnetron sputtering technology. At various temperatures of 500 °C, 600 °C, 700 °C, 800 °C, and 900 °C, the samples were (had) annealed for 2 h (a 2-h duration). The results showed improvement in the crystalline performance of ITO film at selected annealing temperatures, with a significant reduction in resistivity at 800 °C. The lowest resistivity is 4.08 × 10?4 Ω-cm, which is nearly an order of magnitude lower than the unannealed sample. All samples have an average light transmittance above 85% in the visible light range (400–800 nm), and with increasing annealing temperature, the average light transmittance tends to decrease. Besides, at the sensitive wavelength of 550 nm, the light transmittance is as high as 93.74%. The sheet resistance testing of the sample was through the number of bending times, which revealed that with the increase of the number of bending, the sheet resistance increases. However, after 1200 bending times, the change rate of the sheet resistance remains below 5%. Thus, the ITO film prepared on the flexible fluorphlogopite substrate revealed excellent optical and electrical properties, good flexibility, and improved stability after high-temperature annealing, which guarantees successful application in flexible electronic devices.  相似文献   
16.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
17.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
18.
Relatively low efficiency is the biggest obstacle to the popularization of water electrolysis, which is a particularly feasible way to produce super-pure hydrogen. Imposing a magnetic field can increase the hydrogen production efficiency of water electrolysis. However, the enhancement's detailed mechanism still lacks an insightful understanding of the bubbles' micro vicinity. Our recent work aims to understand why the micro-magnetohydrodynamic (MHD) convection hinders single bubbles' detachment on the microelectrode. A water electrolysis experiment by microelectrode is performed under an electrode-normal magnetic field, and dynamic analysis of the single bubble growing on microelectrodes is performed. The variation of bubble diameter with time in the presence or absence of the magnetic field was measured, and the forces acting on the bubble were quantified. The result shows that the micro-MHD convection, induced by Lorentz force, can give rise to a downward hydrodynamic pressure force that will not appear in large-scale MHD convection. This force can be of the same magnitude as the surface tension, so it dramatically hinders bubbles' detachment. Besides, the Kelvin force provides a new potential way for further improving the efficiency of water electrolysis.  相似文献   
19.
20.
The purpose of the current work was to research the effect of alkali metal oxide on the structure, thermal properties, viscosity and chemical stability in the glass system (R2O–CaO–B2O3–SiO2) systematically. Because the glass would emulsify when Li2O was added to the glass batch, this article did not discuss Li2O. The results showed that when the amount of Na2O was less than 4 mol.%, there was a higher interconnectivity of borate and silicate sub-networks in glass, as more mixed Si–O–B bonds were present in glass. The glass samples exhibited excellent thermal properties and chemical stabilities. As the amount of Na2O exceeded 4 mol.%, the interconnectivity of borate and silicate sub-networks was weakened. The thermal properties and chemical stabilities of the glass samples were reduced. The connectivity of the silicate sub-network was weakened slightly as the Na/K ratio varied, and the coefficient of thermal expansion (CTE) of the glass samples gradually increased, and the resistance to thermal shock (RTS) value gradually decreased. Moreover, the viscosity of the glass samples decreased with the ratio of Na/Si and Na/K increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号