In order to develop and test the integration procedure, in this paper a real time process integration involving the optimization and control of the process is presented, in this case, with the two-layer approach. The used optimization algorithms were Levenberg–Marquardt and SQP that solve a non-linear least square problem subject to bounds on the variables. The two-layer approach is a hierarchical control structure where an optimization layer calculates the set points and manipulated variables to the advanced controller, which is based on the dynamic matrix control with constraints (QDMC). The non-isothermal dynamic model of the three-phase slurry catalytic reactor with appropriate solution procedure was utilized in this work (Vasco de Toledo, E. C., Santana, P. L., Maciel, M. R. W., & Maciel Filho, R. (2001). Dynamic modeling of a three-phase catalytic slurry reactor. Chemical Engineering Science, 56, 6055–6061). The model consists on mass and heat balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. The model was used to describe the dynamic behavior of hydrogenation reaction of o-cresol to obtain 2-methil-cyclohexanol, in the presence of a catalyst Ni/SiO2. 相似文献
Journal of Applied Electrochemistry - The modification of an iron electrode was carried out according to the following two steps. In a first step, a cathodic reduction is performed to form a film... 相似文献
The reactive organoselenium compound ebselen is being investigated for treatment of coronavirus disease 2019 (COVID-19) and other diseases. We report structure-activity studies on sulfur analogues of ebselen with the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), employing turnover and protein-observed mass spectrometry-based assays. The results reveal scope for optimisation of ebselen/ebselen derivative- mediated inhibition of Mpro, particularly with respect to improved selectivity. 相似文献
Protection of Metals and Physical Chemistry of Surfaces - The corrosion of copper in an aqueous 0.5 M H2SO4 has been studied under the effect of Arghel plant extracts using potentiodynamic... 相似文献
Supercharged diesel engines are a key element in diesel powertrains that have been extensively modelled yet often without explainable mathematical trends. The present paper demonstrates the analytical modelling of in-cylinder gas speed dynamics and engine brake power. These analytical models provide explainable mathematical trends. In addition, they provide gear-shifting-based modeling because the model parameters can be adjusted to reflect different driving conditions without the need for gathering field data. An unprecedented sensitivity analysis was conducted on these developed models for simplifying them. They were validated using experimental data and the relative error of the developed model of the in-cylinder gas speed dynamics was 9.8%. The study demonstrates with 73% coefficient of determination that the average percentage of deviation of the simulated results from the corresponding field data on the engine brake power is 6.9%. The relative error of the developed model of the engine brake power is 7%. These values of relative error are an order of magnitude of deviation that is less than that of widely recognized models in the field of vehicle powertrain modeling such as the CMEM and GT-Power. These analytically developed models serve as widely valid models. Having addressed and corrected flaws in the corresponding models, such as the model of the in-cylinder gas speed dynamics presented in a key reference in this research area, these developed models can help in better analyzing and assessing the performance of diesel engines.
The discovery of eco-friendly, rapid, and cost-effective compounds to control diseases caused by microbes and insects are the main challenges. Herein, the magnesium oxide nanoparticles (MgO-NPs) are successfully fabricated by harnessing the metabolites secreted by Penicillium chrysogenum. The fabricated MgO-NPs were characterized using UV-Vis, XRD, TEM, DLS, EDX, FT-IR, and XPS analyses. Data showed the successful formation of crystallographic, spherical, well-dispersed MgO-NPs with sizes of 7–40 nm at a maximum wavelength of 250 nm. The EDX analysis confirms the presence of Mg and O ions as the main components with weight percentages of 13.62% and 7.76%, respectively. The activity of MgO-NPs as an antimicrobial agent was investigated against pathogens Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, and exhibited zone of inhibitions of 12.0 ± 0.0, 12.7 ± 0.9, 23.3 ± 0.8, 17.7 ± 1.6, and 14.7 ± 0.6 mm respectively, at 200 µg mL−1. The activity is decreased by decreasing the MgO-NPs concentration. The biogenic MgO-NPs exhibit high efficacy against different larvae instar and pupa of Anopheles stephensi, with LC50 values of 12.5–15.5 ppm for I–IV larvae instar and 16.5 ppm for the pupa. Additionally, 5 mg/cm2 of MgO-NPs showed the highest protection percentages against adults of Anopheles stephensi, with values of 100% for 150 min and 67.6% ± 1.4% for 210 min. 相似文献
Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time. 相似文献
Journal of Applied Electrochemistry - The choice of the electroplating conditions of Ni-based alloys has always been a serious research question. In this study, an artificial neural network based... 相似文献
A new multi-directional search approach that aims at maximizing the flow entropy of water distribution systems is investigated. The aim is to develop an efficient and practical maximum entropy based approach. The resulting optimization problem has four objectives, and the merits of objective reduction in the computational solution of the problem are investigated also. The relationship between statistical flow entropy and hydraulic reliability/failure tolerance is not monotonic. Consequently, a large number of maximum flow entropy solutions must be investigated to strike a balance between cost and hydraulic reliability. A multi-objective evolutionary optimization model is developed that generates simultaneously a wide range of maximum entropy values along with clusters of maximum and near-maximum entropy solutions. Results for a benchmark network and a real network in the literature are included that demonstrate the effectiveness of the procedure. 相似文献