首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3248篇
  免费   308篇
  国内免费   6篇
电工技术   45篇
综合类   1篇
化学工业   758篇
金属工艺   98篇
机械仪表   248篇
建筑科学   50篇
能源动力   171篇
轻工业   235篇
水利工程   6篇
石油天然气   2篇
武器工业   2篇
无线电   681篇
一般工业技术   758篇
冶金工业   131篇
原子能技术   60篇
自动化技术   316篇
  2024年   14篇
  2023年   49篇
  2022年   59篇
  2021年   137篇
  2020年   87篇
  2019年   109篇
  2018年   106篇
  2017年   131篇
  2016年   160篇
  2015年   128篇
  2014年   188篇
  2013年   217篇
  2012年   256篇
  2011年   272篇
  2010年   186篇
  2009年   187篇
  2008年   187篇
  2007年   132篇
  2006年   121篇
  2005年   108篇
  2004年   118篇
  2003年   96篇
  2002年   90篇
  2001年   69篇
  2000年   75篇
  1999年   43篇
  1998年   42篇
  1997年   46篇
  1996年   33篇
  1995年   15篇
  1994年   14篇
  1993年   10篇
  1992年   13篇
  1991年   9篇
  1990年   5篇
  1989年   13篇
  1988年   2篇
  1987年   8篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有3562条查询结果,搜索用时 15 毫秒
31.
Regenerated silk fibroin (SF) filaments could be prepared by wet spinning in common solvent/coagulation system. SF was directly dissolved in mixture solvent of phosphoric acid and formic acid (20/80–30/70 ratio) and coagulated in methanol bath. The concentration and stability of SF dope solution have been studied by varying the mixture ratios of these solvents in accordance with elucidating the role of formic acid in the mixture solvent system. Morphological structure as well as crystalline structure of the regenerated filament was examined using SEM and XRD analyses. As a result of tensile test, the regenerated SF filament, which was made by one‐step dissolution and coagulation process, had good mechanical properties, 2.3 gf/d tenacity and 18% breaking strain. In this study, a simple wet spinning method which enables to apply to practical production has been reported for the preparation of the regenerated SF filament. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
32.
A crystallization monitoring system using a quartz crystal oscillator was utilized to predict different shapes of crystal formation by measuring crystal growth rate and to measure supersaturation. Applying different rates of cooling, crystal formation of different shapes was induced, and the frequency variation of the oscillator and the crystal shape observed with an SEM were compared to determine how the frequency variation can be interpreted for the prediction of produced crystal shape. The experimental results obtained from the crystallization of potassium nitrate and cupric sulfate solutions showed that the proposed frequency measurement technique could be applied in the prediction of crystal shape of cooling crystallization processes. In addition, supersaturation was determined from the measurements of solution and coolant temperatures.  相似文献   
33.
Recently, lithium titanium oxide material has gained renewed interest in electrodes for lithium ion rechargeable batteries. We investigated the influence of excess Li on the structural characteristics of lithium titanium oxide synthesized by the conventional powder calcination method, considering the potential for mass production. The lithium excess ratio is controlled by using different weight of Li2CO3 powder during calcination. X-ray diffraction (XRD) measurement for the synthesized powder showed that the lithium titanium oxide material with excess lithium content had a spinel crystal structure as well as a different crystal one. In addition, high resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM) measurement revealed that the lithium titanium oxide powders with a lithium excess ratio of 5–20% exhibited a two phase formation. Inductively coupled plasma — atomic emission spectrometer (ICP-AES) and energy dispersive x-ray spectroscopy (EDX) measurements were used to analyze composition of the lithium titanium oxide powder. These results suggested that the conventional calcination method, considering the potential for mass production, formed two phases according to the Li excess amount in initial raw materials.  相似文献   
34.
Strong polyelectrolytes, referred to as superplasticizers, are known to improve the initial fluidity of concentrated cement suspensions. To quantify how the polyelectrolytes affect the fluidity, we have studied the effect of a strong anionic polyelectrolyte, melamine formaldehyde sulfonate (MFS), on the zeta potential of cement particles and on the steady-shear and low-amplitude rheological properties of cement suspensions. Adsorption of low concentrations of MFS onto the cement particles leads to an inversion in the sign of the surface potential, causing the electrostatically flocculated particles to become electrostatically dispersed and giving rise to a corresponding decrease in the steady-shear viscosity and storage modulus. At an intermediate MFS concentration, the steady-shear viscosity and the storage modulus each display a minimum. This concentration corresponds to that at which the zeta potential becomes constant. Larger concentrations of MFS result in an increase in the viscosity and storage modulus, which is attributed to depletion flocculation. These results thus relate the interaction between particles to the suspension fluidity through the analysis on the surface potential of particles and microstructure of suspension.  相似文献   
35.
Strong polyelectrolytes, known as superplasticizers, improve the initial fluidity of concentrated cement suspensions through electrostatic stabilization. These polyelectrolytes do not maintain the initial fluidity, however, primarily due to an increase in the ionic strength of the cementitious suspension. Consequently, non-ionic polymers are often used in conjunction with polyelectrolytes to provide steric stabilization and hence to sustain the desired fluidity over a longer time, and this has lead to the development of copolymers with both electrostatic and steric (electrosteric) functionalities. To design such polymers, it is necessary to optimize the balance between electrostatic and steric stabilization to maximize suspension fluidity. We have quantified the effects of a strong anionic polyelectrolyte, melamine formaldehyde sulfonate (MFS), and a non-ionic polymer, hydroxypropylmethylcellulose (HPMC), on the zeta potential of cement particles and the steady shear and low-amplitude rheological properties of concentrated cement suspensions. While the adsorption of MFS onto the cement particle surfaces leads to a sign inversion in the zeta potential, the adsorption of the non-ionic HPMC has no significant effect on the potential. The addition of HPMC to the suspensions substantially reduces the steady shear viscosity and the storage modulus at constant MFS concentration; in addition, there exists an intermediate HPMC concentration that minimizes fluidity. The resulting suspension fluidity is also maintained over a longer time than in the absence of HPMC. This improvement in the stability and fluidity of cement suspensions is attributed to “complementary electrosteric dispersion/stabilization”, and provides insight to the design of polymers with electrosteric functionality.  相似文献   
36.
Poly(ethylene terephthalate) (PET)/clay nanocomposite was prepared by the direct polymerization with clay‐supported catalyst. The reaction degree of catalyst against the cation exchange capacity of clay was 8 wt %. The intercalation of PET chains into the silicate layers was revealed by X‐ray diffraction studies. SEM morphology of the nanocomposite showed a good dispersion of clay‐supported catalyst, ranging from 30 to 100 nm. The intercalated and exfoliated clay‐supported catalyst in PET matrix was also observed by TEM. The improvement of O2 permeability for PET/clay‐supported catalyst composite films over the pure PET is approximately factors of 11.3–15.6. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4875–4879, 2006  相似文献   
37.
π‐Conjugated poly(3‐nitropyridine‐2,5‐diyl) ( PPy‐3‐NO2 ), poly(3,3′‐dinitro‐2,2′‐bipyridine‐5,5′‐diyl) ( PBpy‐3,3′‐diNO2 ), and a poly(arylene ethynylene) type polymer consisting of a 3,3′‐dinitro‐2,2′‐bipyridine unit ( PAE‐1 ) were synthesized by Cu‐promoted Ullmann coupling reaction and Pd‐catalyzed coupling reaction. PPy‐3‐NO2 and PAE‐1 were soluble in organic solvents such as DMSO, DMF, and chloroform, and gel permeation chromatography analysis showed a number average molecular weight (Mn) of 9,300 and 12,300, respectively. PPy‐3‐NO2 gave intrinsic viscosity, [η], of 0.53 dL g?1 in DMF. PBpy‐3,3′‐diNO2 had somewhat lower solubility. The polymers exhibited a UV–vis peak at about 430 nm. PPy‐NO2 received electrochemical reduction at ?1.5 V versus Ag+/Ag in acetonitrile, and gave an electrochemical redox cycle in a range from 0 to ?1.1 V versus Ag+/Ag in an aqueous solution. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1763–1767, 2006  相似文献   
38.
Cr-modified Pt/C catalysts were prepared by the chemical vapour deposition (CVD) of Cr on Pt/C, and their performance as a cathode of phosphoric acid fuel cell (PAFC) was compared with the case of catalysts containing Cr added by impregnation (IMP).The catalyst prepared by CVD showed a higher activity for oxygen reduction reaction (ORR) than one prepared by IMP. There was an optimum amount of Cr that yielded the maximum mass activity of the catalyst because the gain in the intrinsic activity due to the promotional effect of Cr was counterbalanced by the loss of exposed Pt surface area as a result of the Cr introduction. Nevertheless, the activity increase at the optimum amount of Cr was greater for the CVD catalyst than for the IMP catalyst. Also, the optimum amount of Cr to yield the maximum activity was smaller for the former catalyst [Cr/Pt]CVD = 0.6, than for the latter, [Cr/Pt]IMP = 1.0.The enhancement of the Pt catalyst activity by Cr addition is attributed to two factors: changes in the surface Pt-Pt spacing and the electronic modification of the Pt surface. The formation of a Pt-Cr alloy, as confirmed by X-ray diffraction, decreased the lattice parameter of Pt, which was beneficial to the catalyst activity for ORR. X-ray photoelectron spectroscopy results showed that the binding energies of Pt electrons were shifted to higher energies due to Cr modification. Accordingly, the electron density of Pt was lowered and the Pt-O bond became weak on the Cr-modified catalysts, which was also beneficial to the catalyst activity for ORR.The promotion of oxygen reduction on Cr-modified catalysts was confirmed by measuring the cyclic voltammograms of the catalysts. All the above changes were made more effectively for catalysts prepared by CVD than for those prepared by IMP because the former method allowed Cr to interact more closely with the Pt surface than the latter, which was demonstrated by the characterization of catalysts in this study.  相似文献   
39.
Two new poly(arylene ethynylenes) were synthesized by the reaction of 1,4‐diethynyl‐2.5‐dioctylbenzene either with 4,4′‐diiodo‐3,3′‐dimethyl‐1,1′‐biphenyl or 2,7‐diiodo‐9,9‐dioctylfluorene via the Sonogashira reaction, and their photoluminescence (PL) and electroluminescence (EL) properties were studied. The new poly(arylene ethynylenes) were poly[(3,3′‐dimethyl‐1,1′‐biphenyl‐4,4′‐diyl)‐1,2‐ethynediyl‐(2,5‐dioctyl‐1,4‐phenylene)‐1,2‐ethynediyl] (PPEBE) and poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐1,2‐ethynediyl‐(2,5‐dioctyl‐1,4‐phenylene)‐1,2‐ethynediyl] (PPEFE), both of which were blue‐light emitters. PPEBE not only emitted better blue light than PPEFE, but it also performed better in EL than the latter when the light‐emitting diode devices were constructed with the configuration indium–tin oxide/poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid) (50 nm)/polymer (80 nm)/Ca:Al. The device constructed with PPEBE exhibited an external quantum efficiency of 0.29 cd/A and a maximum brightness of about 560 cd/m2, with its EL spectrum showing emitting light maxima at λ = 445 and 472 nm. The device with PPEFE exhibited an efficiency of 0.10 cd/A and a maximum brightness of about 270 cd/m2, with its EL spectrum showing an emitting light maximum at λ = 473 nm. Hole mobility (μh) and electron mobility (μe) of the polymers were determined by the time‐of‐flight method. Both polymers showed faster μh values. PPEBE revealed a μh of 2.0 × 10?4 cm2/V·s at an electric field of 1.9 × 105 V/cm and a μe of 7.0 × 10?5 cm2/V·s at an electric field of 1.9 × 105 V/cm. In contrast, the mobilities of the both carriers were slower for PPEFE, and its μh (8.0 × 10?6 cm2/V·s at an electric field of 1.7 × 106 V/cm) was 120 times its μe (6.5 × 10?8 cm2/V·s at an electric field of 8.6 × 105 V/cm). The much better balance in the carriers' mobilities appeared to be the major reason for the better device performance of PPEBE than PPEFE. Their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels were also a little different from each other. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 299–306, 2006  相似文献   
40.
Summary: We report herein calixarene derivatives, which could adapt to various fields of application, as novel pore generators for making nanoporous materials. The pore structure of nanoporous materials exhibits disordered pores with small mesopore diameter (2–3 nm), which is similar to the micelle‐like assembled structure of the calixarene compounds. The electro‐optical properties such as dielectric constants and refractive indexes of these porous thin films can easily be manipulated. The calixarene‐templated nanoporous films could find a variety of potential applications, such as low‐dielectric constant (k) materials and high‐surface area materials for catalysis and biotechnology.

PM3‐optimized structures of CA[4] and CA[6].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号