首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2937篇
  免费   51篇
  国内免费   1篇
电工技术   3篇
综合类   2篇
化学工业   202篇
金属工艺   5篇
机械仪表   28篇
建筑科学   22篇
矿业工程   4篇
能源动力   24篇
轻工业   107篇
水利工程   4篇
石油天然气   9篇
无线电   54篇
一般工业技术   109篇
冶金工业   2253篇
原子能技术   3篇
自动化技术   160篇
  2024年   3篇
  2023年   14篇
  2022年   20篇
  2021年   33篇
  2020年   30篇
  2019年   22篇
  2018年   34篇
  2017年   34篇
  2016年   35篇
  2015年   23篇
  2014年   32篇
  2013年   75篇
  2012年   52篇
  2011年   55篇
  2010年   37篇
  2009年   38篇
  2008年   28篇
  2007年   22篇
  2006年   29篇
  2005年   30篇
  2004年   14篇
  2003年   14篇
  2002年   15篇
  2001年   9篇
  2000年   8篇
  1999年   82篇
  1998年   769篇
  1997年   386篇
  1996年   249篇
  1995年   149篇
  1994年   107篇
  1993年   148篇
  1992年   23篇
  1991年   28篇
  1990年   32篇
  1989年   25篇
  1988年   29篇
  1987年   40篇
  1986年   19篇
  1985年   10篇
  1983年   5篇
  1982年   6篇
  1981年   8篇
  1980年   28篇
  1979年   2篇
  1978年   2篇
  1977年   28篇
  1976年   100篇
  1975年   5篇
  1955年   1篇
排序方式: 共有2989条查询结果,搜索用时 15 毫秒
41.
The use of an iron dispersed catalyst, derived from Fe3(CO)12, for extra-heavy crude oil upgrading using methane as source of hydrogen was studied. The upgrading reactions were carried out batchwise in a stainless-steel 300 ml Parr reactor with 250 ppm of Fe at a temperature of 410-420 °C, a pressure of 11 MPa of CH4, and a residence time of 1 h. In the presence of Fe3(CO)12, the reaction of Hamaca extra-heavy crude oil led to a reduction of two orders of magnitude in the viscosity (from 500 to 1.3 Pa s), 14% reduction in sulfur content, and 41% conversion of the >500 °C fraction in the upgraded product with respect to the original crude. The iron catalyst was isolated from the coke produced from the upgrading reaction and was analyzed by XPS, EDAX, and Mössbauer spectroscopy. The results indicated the presence of a Fe-V mixed sulfide species with a composition ca. (Fe0.6V0.4)zS, where z is in the range 0.8-0.9.  相似文献   
42.
Periodic hybrid nanostructured materials based on aligned inorganic nanoparticles within self-assembled copolymer matrixes aimed to harness the collective properties of generated functional nanomaterials. The nanoparticles are desirable for their useful magnetic, optical, catalytic, and electronic properties owed to the quantum confinement effect. For instance, gold, palladium and platinum as nanoparticles, have shown significant change in the physiochemical properties in comparison to their bulk materials. If the nanoparticles are aligned into well-defined macroscopic periodic nanostructures in diverse of morphologies, the unique collective properties are significantly enhanced. These unique properties can be transformed to improve the performance of storage media, multi-contact tracks solar panels and optoelectronic devices. Within this review, the nanofabrication tools will be presented as an alternative route to conventional top-down methods for the fabrication of periodic nanostructured hybrid materials. A simple approach is reviewed to fabricate periodic nanostructured hybrid systems based on the directed assembly of inorganic nanoparticles into well-defined periodic three-dimensional nanostructures provided by the self-assembling ability of block copolymers. The fabrications of varieties morphologies and the formation mechanism at different dimensions will be discussed as well as the characterization techniques. Finally, several applications of the proposed hybrid nanostructures are highlighted for the next generation of miniaturized devices.  相似文献   
43.
Vegetable oils are very promising alternatives to fossil lubricants due to their abundance, low cost, excellent performance, and environmental friendliness. Due to its multifunctional structure, castor oil is an excellent precursor in the synthesis of new biolubricants. However, it showed poor thermal-oxidative stability and a higher pour point. This study used castor oil fatty acids prepared by transesterification (EHRO), epoxidation (TEPO), and oxirane ring opening with the aromatic amines aniline (ANIL) and p-anisidine (ANIS). The chemical structure of these oils was verified by 1H and 13C NMR analysis, and mass spectrometry. Measurements show that the presence of an aromatic amine increases the viscosity resulting in 172 (ANIL) and 199 (ANIS) cSt at 40°C, but reduces viscosity index to 16 and 1, respectively. In addition, the amine groups can scavenge radicals increasing their thermal and oxidative stability. These products do not oxidize copper, and tribological analysis reveals that ANIS has the lowest torque with wear equivalent to commercial mineral lubricant NH-140.  相似文献   
44.
This study evaluated the effectiveness of benzodioxole derivatives as coinitiators of radical polymerization in a model‐dental adhesive resin. To compose the adhesive resin, a monomer mixture based on 50 wt % of Bis‐GMA, 25 wt % of TEGDMA, and 25 wt % of HEMA was used. Camphorquinone (CQ) 1 mol % was used as a photoinitiator to initiate polymerization. 1,3‐Benzodioxole (BDO) and piperonyl alcohol (PA) were used as coinitiators at 0.25, 0.5, 1, 2, 4, 8, and 16 mol % level. In addition, tertiary amine, ethyl 4‐dimethylamino benzoate (EDAB) was used as coinitiator in the control group. Some physical, chemical, and mechanical properties of the polymer formed in the experimental adhesives were evaluated using the kinetics of polymerization, sorption and solubility, flexural strength, and elastic modulus tests. The results indicated that BDO and PA were effective coinitiators in the photoinitiator system based on CQ. Comparisons between the benzodioxoles derivative coinitiators and EDAB showed similar performance in the kinetics of polymerization and flexural strength. For water sorption and solubility evaluation, BDO and PA demonstrated significantly more sorption of water and less solubility than the EDAB control group. The findings suggest that BDO and PA were feasible alternatives to conventional amine as coinitiator. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
45.
Purpose: The aim of this study was to evaluate the effects of different zirconia surface treatments on the bond strength of two self-adhesive resinous cements (SARC).

Methods: Two hundred and eight cylindrical specimens were obtained from Y-TZP zirconia (half with diameter 3.2 mm and half with 4.8 mm). After sintering and polishing, specimens were divided into four groups (n = 26), according to surface treatment: Control (no treatment); Sandblasting (Al2O3 particles); Rocatec (Al2O3 particles, tribochemical silica coating and silane application); Laser (Nd: YAG laser: 20 Hz, 100 mJ, 0.2 J/cm²). The surface roughness (Ra) was evaluated after the surface treatments, and the groups were divided into two subgroups (n = 13), according to the SARC tested: RelyX U200 and Bifix SE. The 2.2-mm cylinders were bonded to 4.8-mm cylinders and stressed until failure under shear using a universal testing machine. Bond strength and Ra were analyzed using ANOVA, and Tukey’s test (α = 0.05).

Results: Surface treatment was significant (p < 0.0001), but cement type (p = 0.73) was not. Related to roughness, significant differences were found for the treatment type (p < 0.0001), with laser being the treatment with higher Ra values.

Conclusions: Nd:YAG laser produced a rougher surface and a higher bond strength compared with sandblasting, silicatization, and control groups.  相似文献   
46.
The present review paper supports the approach to deliver melatonin and to target melatonin receptors for neuroprotection in stroke. We discuss laboratory evidence demonstrating neuroprotective effects of exogenous melatonin treatment and transplantation of melatonin-secreting cells in stroke. In addition, we describe a novel mechanism of action underlying the therapeutic benefits of stem cell therapy in stroke, implicating the role of melatonin receptors. As we envision the clinical entry of melatonin-based therapeutics, we discuss translational experiments that warrant consideration to reveal an optimal melatonin treatment strategy that is safe and effective for human application.  相似文献   
47.
Carbon nanofibres have been prepared by a floating catalyst procedure at industrial scale in a metallic furnace. The nanofibres (50-500 nm diameter and 5-200 μm length) are grown from the Fe particles used as catalyst. Soot appears together with the carbon nanofibres. The sample has been chemically activated using KOH as activating agent. Scanning electron microscopy has shown a smooth surface for the as-prepared carbon nanofibres but a rough surface for the activated ones. The specific surface area increases from 13 to 212 m2/g due to the activation. The volume of the micropores (in the 1-2 nm range) and the mesopores (2-5 nm range), as deduced by density functional theory methods, also increases after the activation. Electrochemical behaviour of the as-prepared and activated carbon nanofibres has been tested in a supercapacitor at laboratory scale using 6 M KOH aqueous solution as electrolyte. The specific capacitance, which is less than 1 F/g for the as-prepared sample, increase up to ≈60 F/g for the activated sample. Only a slight decrease in capacitance has been observed as the current density increases. Specific power of ≈100 W/kg at specific energy of 1 Wh/kg has been found in some particular cases. We have compared the electrochemical parameters of our activated carbon nanofibres with those of activated carbon nanofibres coming from a commercial sample; the latter was activated by the same way as our sample.  相似文献   
48.
Polyurethanes can be prepared using polyols obtained from vegetable oils in natura, such as castor oil, or from functionalized vegetable oils, such as hydroxylated soybean oil. These polyurethanes have different valuable properties, determined by their chemical composition and cross-linking density. In this study, soy epoxy polyols with different OH contents were prepared through a one-step reaction using the method of in situ performic acid generation. Polyols with OH functionalities from 1.9 to 3.2 were reacted in bulk with different diisocyanates at a NCO/OH molar ratio of 0.8 and 60°C for 24 h. Mechanical properties of the polyurethanes were determined by dynamic mechanical thermal analysis, hardness (Shore A), and swelling measurements. Polymer networks with glass-transition temperatures (T g ) from −13 to 48°C were obtained. We observed that the higher the OH functionality of the polyols, the higher the T g and cross-linking density of the polyurethane network. The influence of diisocyanate structure (rigid or flexible chain), curing temperature, and curing reaction time on mechanical properties was also investigated.  相似文献   
49.
New extended anionic surfactants with a carboxylate or sulfate polar head were synthesized from polypropoxylated alcohols, and their structures were confirmed by 1H and 13C nuclear magnetic resonance analysis. The extended surfactant critical micelle concentration was found to decrease with the length of the polypropylene glycol spacer. Surfactants containing a diethylene glycol link to the head group exhibited a higher critical micelle concentration than did their nondiethoxylated homologs.  相似文献   
50.
We theoretically study the dynamic dielectric response function of a gas of massless Fermions embedded in a coupled double quantum wire structure based on graphene. We write the dielectric function within the random phase approximation (RPA). We approach the system using the two-dimensional (2D) Dirac-like Hamiltonian in the first place, where a parameter β, accounting for the interaction between the substrate and the graphene sheet, is considered in an ad-hoc manner. We study the weak tunneling regime between the two ribbons and find the energy dispersion of the acoustical and optical plasmon modes. Our results show that different choices for the parameter β in the structure should induce spatial anisotropy effects on the plasmon modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号