首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8657篇
  免费   543篇
  国内免费   28篇
电工技术   132篇
综合类   6篇
化学工业   1795篇
金属工艺   326篇
机械仪表   586篇
建筑科学   164篇
能源动力   371篇
轻工业   629篇
水利工程   30篇
石油天然气   11篇
无线电   1762篇
一般工业技术   1853篇
冶金工业   623篇
原子能技术   149篇
自动化技术   791篇
  2024年   6篇
  2023年   111篇
  2022年   152篇
  2021年   281篇
  2020年   212篇
  2019年   184篇
  2018年   243篇
  2017年   272篇
  2016年   321篇
  2015年   229篇
  2014年   338篇
  2013年   541篇
  2012年   563篇
  2011年   678篇
  2010年   488篇
  2009年   497篇
  2008年   472篇
  2007年   370篇
  2006年   333篇
  2005年   304篇
  2004年   276篇
  2003年   236篇
  2002年   253篇
  2001年   211篇
  2000年   203篇
  1999年   197篇
  1998年   307篇
  1997年   183篇
  1996年   142篇
  1995年   94篇
  1994年   99篇
  1993年   79篇
  1992年   43篇
  1991年   55篇
  1990年   38篇
  1989年   32篇
  1988年   28篇
  1987年   29篇
  1986年   17篇
  1985年   13篇
  1984年   12篇
  1983年   14篇
  1982年   10篇
  1981年   14篇
  1980年   8篇
  1979年   6篇
  1977年   10篇
  1976年   10篇
  1975年   3篇
  1974年   5篇
排序方式: 共有9228条查询结果,搜索用时 15 毫秒
131.
We report the synthesis, characterization and behavior in field-effect transistors of non-functionalized soluble diketopyrrolopyrrole (DPP) core with only a solubilizing alkyl chain (i.e. –C16H33 or –C18H37) as the simplest p-channel semiconductor. The characteristics were evaluated by UV–vis and fluorescence spectroscopy, X-ray diffraction, cyclic voltammetry (CV), thermal analysis, atomic force microscopy (AFM) and density functional theory (DFT) calculation. For top-contact field-effect transistors, two types of active layers were prepared either by a solution process (as a 1D-microwire) or thermal vacuum deposition (as a thin-film) on a cross-linked poly(4-vinylphenol) gate dielectric. All the devices showed typical p-channel behavior with dominant hole transports. The device made with 1D-microwiress of DPP-R18 showed field-effect mobility in the saturation region of 1.42 × 10?2 cm2/V s with ION/IOFF of 1.82 × 103. These findings suggest that the non-functionalized soluble DPP core itself without any further functionalization could also be used as a p-channel semiconductor for low-cost organic electronic devices.  相似文献   
132.
This work demonstrates a means of automatic transformation from planar electronic devices to desirable 3D forms. The method uses a spatially designed thermoplastic framework created via extrusion shear printing of acrylonitrile–butadiene–styrene (ABS) on a stress‐free ABS film, which can be laminated to a membrane‐type electronic device layer. Thermal annealing above the glass transition temperature allows stress relaxation in the printed polymer chains, resulting in an overall shape transformation of the framework. In addition, the significant reduction in the Young's modulus and the ability of the polymer chains to reflow in the rubbery state release the stress concentration in the electronic device layer, which can be positioned outside the neutral mechanical plane. Electrical analyses and mechanical simulations of a membrane‐type Au electrode and indium gallium zinc oxide transistor arrays before and after transformation confirm the versatility of this method for developing 3D electronic devices based on planar forms.  相似文献   
133.
A 40 W gallium-nitride microwave Doherty power amplifier for WCDMA repeater applications is presented. The main amplifier and peaking amplifier are implemented using two 20 W PEP GaN HEMTs. Performance is evaluated for broadband gain, power efficiency and adjacent-channel-power-ratio (ACPR). Experimental results of the GaN Doherty amplifier yielded a power gain of over 11 dB from 1.8 to 2.5 GHz, 68% power added efficiency at 40 W peak power. Good linearity performance of -48 dBc ACPR is obtained at a peak-to-average ratio of 9.8 dB.  相似文献   
134.
Incorporation of defects in metal–organic frameworks (MOFs) offers new opportunities for manipulating their microporosity and functionalities. The so-called “defect engineering” has great potential to tailor the mass transport properties in MOF/polymer mixed matrix membranes (MMMs) for challenging separation applications, for example, CO2 capture. This study first investigates the impact of MOF defects on the membrane properties of the resultant MOF/polymer MMMs for CO2 separation. Highly porous defect-engineered UiO-66 nanoparticles are successfully synthesized and incorporated into a CO2-philic crosslinked poly(ethylene glycol) diacrylate (PEGDA) matrix. A thorough joint experimental/simulation characterization reveals that defect-engineered UiO-66/PEGDA MMMs exhibit nearly identical filler–matrix interfacial properties regardless of the defect concentrations of their parental UiO-66 filler. In addition, non-equilibrium molecular dynamics simulations in tandem with gas transport studies disclose that the defects in MOFs provide the MMMs with ultrafast transport pathways mainly governed by diffusivity selectivity. Ultimately, MMMs containing the most defective UiO-66 show the most enhanced CO2/N2 separation performance—CO2 permeability = 470 Barrer (four times higher than pure PEGDA) and maintains CO2/N2 selectivity = 41—which overcomes the trade-off limitation in pure polymers. The results emphasize that defect engineering in MOFs would mark a new milestone for the future development of optimized MMMs.  相似文献   
135.
Electroluminescence (EL) of organic and polymeric fluorescent materials programmable in the luminance is extremely useful as a non‐volatile EL memory with the great potential in the variety of emerging information storage applications for imaging and motion sensors. In this work, a novel non‐volatile EL memory in which arbitrarily chosen EL states are programmed and erased repetitively with long EL retention is demonstrated. The memory is based on utilizing the built‐in electric field arising from the remnant polarization of a ferroelectric polymer which in turn controls the carrier injection of an EL device. A device with vertically stacked components of a transparent bottom electrode/a ferroelectric polymer/a hole injection layer/a light emitting layer/a top electrode successfully emits light upon alternating current (AC) operation. Interestingly, the device exhibits two distinctive non‐volatile EL intensities at constant reading AC voltage, depending upon the programmed direct current (DC) voltage on the ferroelectric layer. DC programmed and AC read EL memories are also realized with different EL colors of red, green and blue. Furthermore, more than four distinguishable EL states are precisely addressed upon the programmed voltage input each of which shows excellent EL retention and multiple cycle endurance of more than 105 s and 102 cycles, respectively.  相似文献   
136.
Despite the advances in the methods for fabricating nanoscale materials, critical issues remain, such as the difficulties encountered in anchoring, and the deterioration in their stability after integration with other components. These issues need to be addressed to further increase the scope of their applicability. In this study, using epitaxial mesoscopic host matrices, materials are spatially confined at the nanoscale, and are supported, anchored, and stabilized. They also exhibit properties distinct from the bulk counterparts proving their high quality nanoscale nature. ZnFe2O4 and SrTiO3 are used as the model confined material and host matrix, respectively. The ZnFe2O4 phases are spatially confined by the SrTiO3 mesoscopic matrix and have strongly enhanced ferrimagnetic properties as compared to bulk and plain thin films of ZnFe2O4, with a Curie temperature of ≈500 K. The results of a series of control experiments and characterization measurements indicate that cationic inversion, which originates from the high interface‐to‐volume ratio of the ZnFe2O4 phase in the ZnFe2O4–SrTiO3 nanocomposite film, is responsible for the magnetization enhancement. An exchange bias is observed, owing to the coexistence of ferrimagnetic and antiferromagnetic regions in the confined ZnFe2O4 phase. The magnetic properties are dependent on the ZnFe2O4 crystallite size, which can be controlled by the growth conditions.  相似文献   
137.
Fluorescent nanodiamonds (FNDs) are promising bioimaging probes compared with other fluorescent nanomaterials such as quantum dots, dye‐doped nanoparticles, and metallic nanoclusters, due to their remarkable optical properties and excellent biocompatibility. Nevertheless, they are prone to aggregation in physiological salt solutions, and modifying their surface to conjugate biologically active agents remains challenging. Here, inspired by the adhesive protein of marine mussels, encapsulation of FNDs within a polydopamine (PDA) shell is demonstrated. These PDA surfaces are readily modified via Michael addition or Schiff base reactions with molecules presenting thiol or nitrogen derivatives. Modification of PDA shells by thiol terminated poly(ethylene glycol) (PEG‐SH) molecules to enhance colloidal stability and biocompatibility of FNDs is described. Their use as fluorescent probes for cell imaging is demonstrated; it is found that PEGylated FNDs are taken up by HeLa cells and mouse bone marrow‐derived dendritic cells and exhibit reduced nonspecific membrane adhesion. Furthermore, functionalization with biotin‐PEG‐SH is demonstrated and long‐term high‐resolution single‐molecule fluorescence based tracking measurements of FNDs tethered via streptavidin to individual biotinylated DNA molecules are performed. This robust polydopamine encapsulation and functionalization strategy presents a facile route to develop FNDs as multifunctional labels, drug delivery vehicles, and targeting agents for biomedical applications.  相似文献   
138.
We have systematically studied the well number dependence of the linewidth enhancement factor in strained quantum-well (QW) lasers and have demonstrated experimentally that the linewidth enhancement factor can be reduced from /spl sim/9.4 to /spl sim/2.0 by increasing the number of compressively strained QW's from 2 to 8. This behavior is primarily due to an increase in the differential gain with the number of QW's.  相似文献   
139.
Metal-semiconductor-metal (MSM) photodiodes with an In0.53 Ga0.47As active region were investigated using a transparent cadmium tin oxide (CTO) layer for the interdigitated electrodes to improve the low responsivity of conventional MSM photodiodes with opaque electrodes. CTO is suitable as a Schottky contact, an optical window and an anti-reflection (AR) coating. The transparent contact prevents shadowing of the active layer by the top electrode, thus allowing greater collection of incident light. Responsivity of CTO-based MSM photodiodes with 1-μm finger widths and 2-μm finger spacings and without an AR coating between the electrodes was twice (0.62 A/W) that of a similar MSM photodiodes with Ti/Au electrodes (0.30 A/W). A thin 800 Å In0.52Al0.48 As layer was inserted below the electrodes to elevate the electrode Schottky barrier height. A digitally graded superlattice region (660 A) was also employed to reduce carrier trapping at the In 0.53Ga0.47As/In0.52Al0.48As heterointerface which acts to degrade photodiode bandwidth. Bandwidth of opaque electrode MSMs was elevated nearly an order of magnitude over a previous MSM photodiode design with an abrupt heterointerface, whereas the bandwidth of transparent electrode MSM's only improved about five times, indicating resistive effects may be intervening  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号