首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   4篇
综合类   1篇
化学工业   15篇
金属工艺   1篇
机械仪表   4篇
轻工业   12篇
无线电   5篇
一般工业技术   9篇
冶金工业   1篇
自动化技术   2篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  1998年   2篇
  1997年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
41.
In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.  相似文献   
42.
43.
44.
Effects of xanthan on the crosslinking of normal and waxy rice starches using a mixture of phosphate salts (sodium trimetaphosphate and sodium tripolyphosphate, 99 : 1, dry solid basis) were investigated. The starch (158.4 g, dry solids) was dispersed in an aqueous solution containing xanthan and phosphate salts (1.6 and 0.6 g in 280 mL water, respectively), and the slurry was dried overnight at 45°C until the moisture content was less than 10%. The dry cake was then ground into powders and heated for 2 h at 130°C in a convection oven. The pasting viscosity, paste clarity, melting and in vitro digestion behaviors of the starches with modifying agents (xanthan and phosphate salts) were investigated. The heat treated starches displayed enhanced shear stability and reduced breakdown, as evidences of crosslinking. Xanthan (1.0% based on starch solids) enhanced the crosslinking effects in the viscosity profile. Waxy rice starch evidenced more profound viscosity changes than did normal rice starch, indicating it was more susceptible to the heat treatment. The waxy rice starch heated with the mixture of phosphate salts and xanthan exhibited a continuous increase in pasting viscosity without any breakdown. Under a DSC analysis, melting enthalpy decreased but melting temperature increased somewhat as results of the heat treatment with xanthan. In an in vitro digestion analysis, the starches treated with xanthan exhibited decreases in the maximum digestion level, and increases in the resistant starch (RS) content. Dry heating, however, increased the digestion rate and glycemic index (GI) regardless of the presence of phosphate salts or xanthan indicating that the starches were thermally degraded. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
45.
New instruments are beginning to reveal the chemical complexity of atmospheric aerosol particles. Exploitation of the plethora of information being made accessible through aerosol particle spectrometry and other techniques requires new strategies for data interpretation. This paper demonstrates and evaluates several analysis methods used to exploit this single-particle high-time-resolution data. In the first part of this study, Standard Reference Material (SRM) particulate matter samples were analyzed by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) in order to evaluate the use of a modified, logarithm based, method of clustering mass spectra using the Adaptive Resonance Theory (ART-2a) algorithm. In the second part of this study, data obtained from the ATOFMS during the four seasons of 2007 were interpreted using a variety of approaches so as to elucidate the nature and sources of particles influencing the great lakes region of North America. This dataset is believed to represent the longest time-span of single-particle data ever analyzed in a study of this nature. These mass spectra were clustered into 21 different particle types using the supervised log-transformed ART-2a algorithm. Both long-term seasonal trends and high-time-resolution temporal patterns of particle type concentrations were examined. Source identification was supported by comparison with known source samples. Potential source contribution functions were used to identify source regions. This paper describes and evaluates these approaches to data interpretation using examples from the ambient air study to illustrate the methodology and highlight the findings. Furthermore, these ambient examples demonstrate how the application of these strategies enhances the interpretation of single-particle ambient aerosol data.

Copyright 2012 American Association for Aerosol Research  相似文献   
46.
47.
The goal of this paper is to identify and control multi-input multi-output (MIMO) processes by means of the dynamic partial least squares (PLS) model, which consists of a memoryless PLS model connected in series with linear dynamic models. Unlike the traditional decoupling MIMO process, the dynamic PLS model can decompose the MIMO process into a multiloop control system in a reduced subspace. Without the decoupler design, the optimal tuning multiloop PID controller based on the concept of general minimum variance and the constrained criteria can be directly and separately applied to each control loop under the proposed PLS modeling structure. Several potential applications using this technique are demonstrated.  相似文献   
48.
A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.  相似文献   
49.
Oh  K.-J. Yea  S. Vetro  A. Ho  Y.-S. 《Electronics letters》2009,45(6):305-306
Depth images represent the distances of scene elements from a camera in 3D space; their efficient coding is crucial for emerging applications such as free-viewpoint TV and 3D video. An in-loop reconstruction filter that improves the depth-coding performance as well as the rendering quality of virtual views based upon the coded depth is proposed.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号