首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189326篇
  免费   8930篇
  国内免费   3207篇
电工技术   5066篇
技术理论   4篇
综合类   5944篇
化学工业   29627篇
金属工艺   9688篇
机械仪表   9311篇
建筑科学   7494篇
矿业工程   2316篇
能源动力   4927篇
轻工业   11148篇
水利工程   2646篇
石油天然气   3329篇
武器工业   554篇
无线电   24959篇
一般工业技术   33307篇
冶金工业   10787篇
原子能技术   1674篇
自动化技术   38682篇
  2024年   227篇
  2023年   1397篇
  2022年   2075篇
  2021年   3658篇
  2020年   2734篇
  2019年   2517篇
  2018年   16887篇
  2017年   15940篇
  2016年   12845篇
  2015年   4152篇
  2014年   5116篇
  2013年   7023篇
  2012年   10037篇
  2011年   16856篇
  2010年   14306篇
  2009年   11838篇
  2008年   12515篇
  2007年   12907篇
  2006年   5206篇
  2005年   5477篇
  2004年   4709篇
  2003年   4446篇
  2002年   3884篇
  2001年   2892篇
  2000年   2582篇
  1999年   2396篇
  1998年   3044篇
  1997年   2086篇
  1996年   1844篇
  1995年   1498篇
  1994年   1113篇
  1993年   999篇
  1992年   752篇
  1991年   688篇
  1990年   555篇
  1989年   495篇
  1988年   434篇
  1987年   323篇
  1986年   318篇
  1985年   260篇
  1984年   224篇
  1983年   162篇
  1982年   164篇
  1981年   139篇
  1980年   133篇
  1979年   112篇
  1978年   96篇
  1977年   128篇
  1976年   162篇
  1975年   83篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
12.
The potential of using high metals containing coal gangue and lignite to prepare high-activity coal char-based catalysts is investigated for effective biomass tar decomposition. Loose structure and rough surface are formed for these char-based catalysts with heterogeneous distribution of a large number of inorganic particles. In the biomass tar decomposition, the performance of the coal char-based catalysts is significantly influenced by the content of the metals in the raw materials and coal gangue char (GC) with the ash content as high as 50.80% exhibits the highest activity in this work. A high biomass tar conversion efficiency of 93.5% is achieved at 800 °C along with a significant increase in the fuel gas product. During the five-time consecutive tests, the catalytic performance of GC increases a little at the second or third times reuse and remains relatively stable, showing the remarkable stability of the catalyst in biomass tar decomposition applications.  相似文献   
13.
14.
The low overall survival rate of patients with pancreatic cancer has driven research to seek a new therapeutic protocol. Radiotherapy (RT) is frequently an option in the neoadjuvant or palliative settings for pancreatic cancer treatment. This study explored the effect of RT protocols on the tumor microenvironment (TME) and their consequent impact on anti-programmed cell death ligand-1 (PD-L1) therapy. Using a murine orthotopic pancreatic tumor model, UN-KC-6141, RT-disturbed TME was examined by immunohistochemical staining. The results showed that ablative RT is more effective than fractionated RT at recruiting T cells. On the other hand, fractionated RT induces more myeloid-derived suppressor cell infiltration than ablative RT. The RT-disturbed TME presents a higher perfusion rate per vessel. The increase in vessel perfusion is associated with a higher amount of anti-PD-L1 antibody being delivered to the tumor. Animal survival is increased by anti-PD-L1 therapy after ablative RT, with 67% of treated animals surviving more than 30 days after tumor inoculation compared to a median survival time of 16.5 days for the control group. Splenocytes isolated from surviving animals were specifically cytotoxic for UN-KC-6141 cells. We conclude that the ablative RT-induced TME is more suited than conventional RT-induced TME to combination therapy with immune checkpoint blockade.  相似文献   
15.
16.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
17.
A novel CdS/CaFe2O4 (CS/CFO) heterogeneous p-n junction was created by thermal deposition of CaFe2O4 nanoparticles on CdS rods. The CS/CFO hetero-structured photocatalysts exhibited increasingly efficient visible light harvesting compared to the bare CdS. The CS/CFO composites also presented higher photocurrent and slower decay of photoluminescence, suggesting a better separation of the photo-generated electrons and holes. The photocatalytic H2 evolution quantity on the optimized CS/CFO composite from water in the presence of ethanol was up to 2200 μmol after 3-h visible light illumination, which is more than twice that of the pristine CdS. The chemical interaction between CdS and CaFe2O4 was confirmed by the shifts in the XPS peaks, which made it possible for the charge carriers to transfer across the p-n junction interface. This research highlights the importance of forming an interfacial p-n heterojunction between two semiconductors for efficient charge separation and improved photocatalytic performance.  相似文献   
18.
Food Science and Biotechnology - MV was reported to have beneficial effects in ameliorating insulin resistance in db/db mice, but the intrinsic mechanisms for glucose homeostasis are unclear. This...  相似文献   
19.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
20.
Hydrogel shells that compartmentalize the water core from the aqueous surrounding provide molecular selectivity on size and charge in transmembrane transport. It is highly demanding to produce thin hydrogel shells to minimize diffusion length and maximize core volume. Here, internal osmosis in water-in-oil-in-water-in-oil (W/O/W/O) triple-emulsion droplets is used to produce thin hydrogel shells enclosing a large water core. The triple-emulsion droplets are prepared to have an ultrathin middle oil layer using a capillary microfluidic device. The innermost water droplet has a higher osmolarity than the outer water layer containing photopolymerizable hydrogel precursors, which pumps water from the outer layer to the core through the ultrathin oil layer by the osmosis. Therefore, the outer layer gets thinner and hydrogel precursors are enriched while the size of the triple-emulsion droplets remains unchanged. Through photopolymerization of precursors and phase transfer from oil to water, hydrogel shells enclosing water core are produced in the water environment; the oil layer is ruptured for molecular exchange through the shells. The thickness and composition of the hydrogel shells are precisely controllable by the osmotic conditions. The shells show a high permeation rate due to the thinness as well as controlled cut-off threshold of permeation for neutral and charged molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号