首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445179篇
  免费   4100篇
  国内免费   648篇
电工技术   7551篇
综合类   340篇
化学工业   71967篇
金属工艺   21665篇
机械仪表   15353篇
建筑科学   9034篇
矿业工程   4519篇
能源动力   8484篇
轻工业   32628篇
水利工程   6032篇
石油天然气   15372篇
武器工业   55篇
无线电   41078篇
一般工业技术   96700篇
冶金工业   71736篇
原子能技术   14687篇
自动化技术   32726篇
  2021年   4239篇
  2019年   4089篇
  2018年   7532篇
  2017年   7775篇
  2016年   8226篇
  2015年   4636篇
  2014年   8060篇
  2013年   18398篇
  2012年   11955篇
  2011年   15420篇
  2010年   12392篇
  2009年   13729篇
  2008年   14237篇
  2007年   14093篇
  2006年   11962篇
  2005年   10489篇
  2004年   10241篇
  2003年   9916篇
  2002年   9908篇
  2001年   9625篇
  2000年   9442篇
  1999年   8853篇
  1998年   18663篇
  1997年   13815篇
  1996年   10629篇
  1995年   8471篇
  1994年   7705篇
  1993年   7718篇
  1992年   6379篇
  1991年   6194篇
  1990年   6452篇
  1989年   6261篇
  1988年   6018篇
  1987年   5631篇
  1986年   5583篇
  1985年   6138篇
  1984年   5927篇
  1983年   5565篇
  1982年   5251篇
  1981年   5347篇
  1980年   5274篇
  1979年   5381篇
  1978年   5569篇
  1977年   5881篇
  1976年   7093篇
  1975年   5031篇
  1974年   5038篇
  1973年   5153篇
  1972年   4494篇
  1971年   4143篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
161.
We present new methods for load balancing of unstructured tree computations on large-scale SIMD machines, and analyze the scalability of these and other existing schemes. An efficient formulation of tree search on an SIMD machine consists of two major components: a triggering mechanism, which determines when the search space redistribution must occur to balance the search space over processors, and a scheme to redistribute the search space. We have devised a new redistribution mechanism and a new triggering mechanism. Either of these can be used in conjunction with triggering and redistribution mechanisms developed by other researchers. We analyze the scalability of these mechanisms and verify the results experimentally. The analysis and experiments show that our new load-balancing methods are highly scalable on SIMD architectures. Their scalability is shown to he no worse than that of the best load-balancing schemes on MIMD architectures. We verify our theoretical results by implementing the 15-puzzle problem on a CM-2 SIMD parallel computer  相似文献   
162.
We present an unified parallel architecture for four of the most important fast orthogonal transforms with trigonometric kernel: Complex Valued Fourier (CFFT), Real Valued Fourier (RFFT), Hartley (FHT), and Cosine (FCT). Out of these, only the CFFT has a data flow coinciding with the one generated by the successive doubling method, which can be transformed on a constant geometry flow using perfect unshuffle or shuffle permutations. The other three require some type of hardware modification to guarantee the constant geometry of the successive doubling method. We have defined a generalized processing section (PS), based on a circular CORDIC rotator, for the four transforms. This PS section permits the evaluation of the CFFT and FCT transforms in n data recirculations and the RFFT and FHT transforms in n-1 data recirculations, with n being the number of stages of a transform of length N=rn. Also, the efficiency of the partitioned parallel architecture is optimum because there is no cycle loss in the systolic computation of all the butterflies for each of the four transforms  相似文献   
163.
Implementing a neural network on a digital or mixed analog and digital chip yields the quantization of the synaptic weights dynamics. This paper addresses this topic in the case of Kohonen's self-organizing maps. We first study qualitatively how the quantization affects the convergence and the properties, and deduce from this analysis the way to choose the parameters of the network (adaptation gain and neighborhood). We show that a spatially decreasing neighborhood function is far more preferable than the usually rectangular neighborhood function, because of the weight quantization. Based on these results, an analog nonlinear network, integrated in a standard CMOS technology, and implementing this spatially decreasing neighborhood function is then presented. It can be used in a mixed analog and digital circuit implementation.  相似文献   
164.
The bounded disorder file organization proposed by W. Litwin and D.B. Lomet (1987) uses a combination of hashing and tree indexing. Lomet provided an approximate analysis with the mention of the difficulty involved in exact modeling of data nodes, which motivated this work. In an earlier paper (M.V. Ramakrishna and P. Mukhopadhyay, 1988) we provided an exact model and analysis of the data nodes, which is based on the solution of a classical sequential occupancy problem. After summarizing the analysis of data nodes, an alternate file growth method based on repeated trials using universal hashing is proposed and analyzed. We conclude that the alternate file growth method provides simplicity and significant improvement in storage utilization  相似文献   
165.
The integration of object-oriented programming concepts with databases is one of the most significant advances in the evolution of database systems. Many aspects of such a combination have been studied, but there are few models to provide security for this richly structured information. We develop an authorization model for object-oriented databases. This model consists of a set of policies, a structure for authorization rules, and algorithms to evaluate access requests against the authorization rules. User access policies are based on the concept of inherited authorization applied along the class structure hierarchy. We propose also a set of administrative policies that allow the control of user access and its decentralization. Finally, we study the effect of class structuring changes on authorization  相似文献   
166.
We describe a binding environment for the AND and OR parallel execution of logic programs that is suitable for both shared and nonshared memory multiprocessors. The binding environment was designed with a view of rendering a compiler using this binding environment machine independent. The binding environment is similar to closed environments proposed by J. Conery. However, unlike Conery's scheme, it supports OR and independent AND parallelism on both types of machines. The term representation, the algorithms for unification and the join algorithms for parallel AND branches are presented in this paper. We also detail the differences between our scheme and Conery's scheme. A compiler based on this binding environment has been implemented on a platform for machine independent parallel programming called the Chare Kernel  相似文献   
167.
A new approach is given for scheduling a sequential instruction stream for execution “in parallel” on asynchronous multiprocessors. The key idea in our approach is to exploit the fine grained parallelism present in the instruction stream. In this context, schedules are constructed by a careful balancing of execution and communication costs at the level of individual instructions, and their data dependencies. Three methods are used to evaluate our approach. First, several existing methods are extended to the fine grained situation. Our approach is then compared to these methods using both static schedule length analyses, and simulated executions of the scheduled code. In each instance, our method is found to provide significantly shorter schedules. Second, by varying parameters such as the speed of the instruction set, and the speed/parallelism in the interconnection structure, simulation techniques are used to examine the effects of various architectural considerations on the executions of the schedules. These results show that our approach provides significant speedups in a wide-range of situations. Third, schedules produced by our approach are executed on a two-processor Data General shared memory multiprocessor system. These experiments show that there is a strong correlation between our simulation results, and these actual executions, and thereby serve to validate the simulation studies. Together, our results establish that fine grained parallelism can be exploited in a substantial manner when scheduling a sequential instruction stream for execution “in parallel” on asynchronous multiprocessors  相似文献   
168.
We present the design of E-kernel, an embedding kernel on the Victor V256 message-passing partitionable multiprocessor, developed for the support of program mapping and network reconfiguration. E-kernel supports the embedding of a new network topology onto Victor's 2D mesh and also the embedding of a task graph onto the 2D mesh network or the reconfigured network. In the current implementation, the reconfigured network can be a line or an even-size ring, and the task graphs meshes or tori of a variety of dimensions and shapes or graphs with similar topologies. For application programs having these task graph topologies and that are designed according to the communication model of E-kernel, they can be run without any change on partitions connected by the 2D mesh, line, or ring. Further, E-kernel attempts the communication optimization of these programs on the different networks automatically, thus making both the network topology and the communication optimization attempt completely transparent to the application programs. Many of the embeddings used in E-kernel are optimal or asymptotically optimal (with respect to minimum dilation cost). The implementation of E-kernel translated some of the many theoretical results in graph embeddings into practical tools for program mapping and network reconfiguration in a parallel system. E-kernel is functional on Victor V256. Measurements of E-kernel's performance on V256 are also included  相似文献   
169.
We consider the design problem for a class of discrete-time and continuous-time neural networks. We obtain a characterization of all connection weights that store a given set of vectors into the network, that is, each given vector becomes an equilibrium point of the network. We also give sufficient conditions that guarantee the asymptotic stability of these equilibrium points.  相似文献   
170.
Nonlinear adaptive filters based on a variety of neural network models have been used successfully for system identification and noise-cancellation in a wide class of applications. An important problem in data communications is that of channel equalization, i.e., the removal of interferences introduced by linear or nonlinear message corrupting mechanisms, so that the originally transmitted symbols can be recovered correctly at the receiver. In this paper we introduce an adaptive recurrent neural network (RNN) based equalizer whose small size and high performance makes it suitable for high-speed channel equalization. We propose RNN based structures for both trained adaptation and blind equalization, and we evaluate their performance via extensive simulations for a variety of signal modulations and communication channel models. It is shown that the RNN equalizers have comparable performance with traditional linear filter based equalizers when the channel interferences are relatively mild, and that they outperform them by several orders of magnitude when either the channel's transfer function has spectral nulls or severe nonlinear distortion is present. In addition, the small-size RNN equalizers, being essentially generalized IIR filters, are shown to outperform multilayer perceptron equalizers of larger computational complexity in linear and nonlinear channel equalization cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号