首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6031篇
  免费   356篇
  国内免费   21篇
电工技术   125篇
综合类   4篇
化学工业   1389篇
金属工艺   239篇
机械仪表   386篇
建筑科学   113篇
矿业工程   2篇
能源动力   341篇
轻工业   511篇
水利工程   23篇
石油天然气   6篇
武器工业   2篇
无线电   943篇
一般工业技术   1436篇
冶金工业   302篇
原子能技术   65篇
自动化技术   521篇
  2024年   5篇
  2023年   74篇
  2022年   98篇
  2021年   165篇
  2020年   151篇
  2019年   139篇
  2018年   190篇
  2017年   185篇
  2016年   210篇
  2015年   157篇
  2014年   266篇
  2013年   357篇
  2012年   444篇
  2011年   510篇
  2010年   358篇
  2009年   407篇
  2008年   369篇
  2007年   302篇
  2006年   228篇
  2005年   218篇
  2004年   182篇
  2003年   161篇
  2002年   165篇
  2001年   132篇
  2000年   133篇
  1999年   108篇
  1998年   143篇
  1997年   120篇
  1996年   86篇
  1995年   72篇
  1994年   46篇
  1993年   45篇
  1992年   28篇
  1991年   18篇
  1990年   20篇
  1989年   22篇
  1988年   18篇
  1987年   14篇
  1986年   11篇
  1985年   8篇
  1984年   3篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1979年   3篇
  1977年   5篇
  1976年   6篇
  1975年   2篇
  1973年   1篇
  1967年   1篇
排序方式: 共有6408条查询结果,搜索用时 15 毫秒
101.
To create ultrathin sticker‐type electronic devices that can be attached to unconventional substrates, it is highly desirable to develop printable membrane‐type electronics on a handling substrate and then transfer the printing to a target surface. A facile method is presented for high‐efficiency transfer printing by controlling the interfacial adhesion between a handling substrate and an ultrathin substrate in a systematic manner under mild conditions. A water‐soluble sacrificial polymer layer is employed on a dimpled handling substrate, which enables the topological confinement of the polymer residue inside and near the dimples during the etching and drying processes to reduce the interfacial adhesion gently, creating a high yield of transfer printing in a deterministic manner. As an example of an electronic device that was created using this method, a highly flexible sticker‐type ZnO thin film transistor was successfully developed with a thickness of 13 μm including a printable ultrathin substrate, which can be attached to various substrates, such as paper, plastic, and stickers.  相似文献   
102.
A new high‐performing small molecule n‐channel semiconductor based on diketopyrrolopyrrole (DPP), 2,2′‐(5,5′‐(2,5‐bis(2‐ethylhexyl)‐3,6‐dioxo‐2,3,5,6‐tetrahydropyrrolo[3,4‐c]pyrrole‐1,4‐diyl)bis(thiophene‐5,2‐diyl))bis(methan‐1‐yl‐1‐ylidene)dimalononitrile (DPP‐T‐DCV), is successfully synthesized. The frontier molecular orbitals in this designed structure are elaborately tuned by introducing a strong electron‐accepting functionality (dicyanovinyl). The well‐defined lamellar structures of the crystals display a uniform terrace step height corresponding to a molecular monolayer in the solid‐state. As a result of this tuning and the remarkable crystallinity derived from the conformational planarity, organic field‐effect transistors (OFETs) based on dense‐packed solution‐processed single‐crystals of DPP‐T‐DCV exhibit an electron mobility (μe) up to 0.96 cm2 V?1 s?1, one of the highest values yet obtained for DPP derivative‐based n‐channel OFETs. Polycrystalline OFETs show promise (with an μe up to 0.64 cm2 V?1 s?1) for practical utility in organic device applications.  相似文献   
103.
We correlate the failure in miniature X‐ray tubes with the field emission gate leakage current of gated carbon nanotube emitters. The miniature X‐ray tube, even with a small gate leakage current, exhibits an induced voltage on the gate electrode by the anode bias voltage, resulting in a very unstable operation and finally a failure. The induced gate voltage is apparently caused by charging at the insulating spacer of the miniature X‐ray tube through the gate leakage current of the field emission. The gate leakage current could be a criterion for the successful fabrication of miniature X‐ray tubes.  相似文献   
104.
The negative capacitance (NC) effect, recently discovered in a fluorite-based ferroelectric thin film, has attracted great attention as a rescue to overcome the scaling limitations of the conventional memory and logic devices of highly integrated circuits. The NC effect manifesting an S-shaped polarization–voltage (P–V) curve is initially interpreted by a 1-dimensional Landau Ginzburg Devonshire (LGD) model. However, a series of recent studies have found that this effect can also be explained by the inhomogeneous stray field energy (ISE) model. In this study, by extending the ISE model in the ferroelectric (FE)-dielectric (DE) layered structure, an analytical model that considers the influence of the interfacial screening charge distribution is presented. This model showed that the NC effect in the FE-DE heterostructure can be manifested in various forms other than a single S-shaped P–V curve. In particular, a double S-shaped P–V curve is expected from the fully compensated anti-parallel domain structure, confirmed experimentally in the actual Al2O3/(Hf0.5Zr0.5)O2/Al2O3 triple-layer structure. Furthermore, to reveal the origin of the double S-shaped P–V curve, a multidomain LGD model is presented. It is confirmed that this phenomenon is attributed to the evolution of inhomogeneous stray field energy.  相似文献   
105.
This paper presents novel topologies implementation for Switched Reluctance Motor (SRM) drive used in commercial applications. For effective utilization of the developed system, a novel direct current controlled PWM scheme is designed and implemented to produce the desired dynamic speed characteristic. In comparison to conventional asymmetric converter topology, it can minimize entire system costs by reducing numbers of power semiconductors. Therefore, it may open up investigation of a new way for SRM to compete with other ac motors such as induction motors, brushless dc motors, etc. The validity of the proposed method is verified through theoretical explanation and experimental results.  相似文献   
106.
This paper presents a high-speed and high-efficiency capsule endoscopy system. Both a transmitter and a receiver were optimized for its application through an analysis of the human body channel. ON-OFF keying modulation is utilized to achieve low power consumption of the in-body transmitter. A low drop output regulator is adopted to prevent performance degradation in the event of a voltage drop in the battery. The receiver adopts superheterodyne structure to obtain high sensitivity, considering the link budget from the previous analysis. The receiver and transmitter were fabricated using the CMOS 0.13-μm process. The output power of the transmitter is -1.6 dB·m and its efficiency is 27.7%. The minimum sensitivity of the receiver is -80 dB·m at a bit error ratio (BER) of 3 × 10 (-6). An outer wall loop antenna is adopted for the capsule system to ensure a small size. The integrated system is evaluated using a liquid human phantom and a living pig, resulting in clean captured images.  相似文献   
107.
The control of unexpectedly rapid Li intercalation reactions without structural instability in olivine‐type LiFePO4 nanocrystals is one of the notable scientific advances and new findings attained in materials physics and chemistry during the past decade. A variety of scientific studies and technological investigations have been carried out with LiFePO4 to elucidate the origins of many peculiar physical aspects as well as to develop more effective synthetic processing techniques for better electrochemical performances. Among the several features of LiFePO4 that have attracted much interest, in this article we address four important issues—regarding doping of aliovalent cations, distribution of Fe‐rich secondary metallic phases, nanoparticle formation during crystallization, and antisite Li/Fe partitioning—by means of straightforward atomic‐scale imaging and chemical probing. The direct observations in the present study provide significant insight into alternative efficient approaches to obtain conductive LiFePO4 nanocrystals with controlled defect structures.  相似文献   
108.
Wireless Personal Communications - Through the use of UAV, the functional lifetime of WSN can be elongated in exchange for higher data delivery latency as the UAV replaces the multi-hop...  相似文献   
109.
It is demonstrated that electric transport in Bi‐deficient Bi1‐δFeO3 ferroelectric thin films, which act as a p‐type semiconductor, can be continuously and reversibly controlled by manipulating ferroelectric domains. Ferroelectric domain configuration is modified by applying a weak voltage stress to Pt/Bi1‐δFeO3/SrRuO3 thin‐film capacitors. This results in diode behavior in macroscopic charge‐transport properties as well as shrinkage of polarization‐voltage hysteresis loops. The forward current density depends on the voltage stress time controlling the domain configuration in the Bi1‐δFeO3 film. Piezoresponse force microscopy shows that the density of head‐to‐head/tail‐to‐tail unpenetrating local domains created by the voltage stress is directly related to the continuous modification of the charge transport and the diode effect. The control of charge transport is discussed in conjunction with polarization‐dependent interfacial barriers and charge trapping at the non‐neutral domain walls of unpenetrating tail‐to‐tail domains. Because domain walls in Bi1‐δFeO3 act as local conducting paths for charge transport, the domain‐wall‐mediated charge transport can be extended to ferroelectric resistive nonvolatile memories and nanochannel field‐effect transistors with high performances conceptually.  相似文献   
110.
Highly efficient bright green‐emitting Zn?Ag?In?S (ZAIS)/Zn?In?S (ZIS)/ZnS alloy core/inner‐shell/shell quantum dots (QDs) are synthesized using a multistep hot injection method with a highly concentrated zinc acetate dihydrate precursor. ZAIS/ZIS/ZnS QD growth is realized via five sequential steps: a core growth process, a two‐step alloying–shelling process, and a two‐step shelling process. To enhance the photoluminescence quantum yield (PLQY), a ZIS inner‐shell is synthesized and added with a band gap located between the ZAIS alloy‐core and ZnS shell using a strong exothermic reaction. The synthesized ZAIS/ZIS/ZnS QDs shows a high PLQY of 87% with peak wavelength of 501 nm. Tripackage white down‐converted light‐emitting diodes (DC‐LEDs) are realized using an InGaN blue (B) LED, a green (G) ZAIS/ZIS/ZS QD‐based DC‐LED, and a red (R) Zn?Cu?In?S/ZnS QD‐based DC‐LED with correlated color temperature from 2700 to 10 000 K. The red, green, and blue tripackage white DC‐LEDs exhibit high luminous efficacy of 72 lm W?1 and excellent color qualities (color rendering index (CRI, Ra) = 95 and the special CRI for red (R9) = 93) at 2700 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号