首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   6篇
  国内免费   4篇
电工技术   2篇
化学工业   11篇
金属工艺   2篇
机械仪表   6篇
建筑科学   8篇
能源动力   3篇
轻工业   9篇
无线电   12篇
一般工业技术   30篇
冶金工业   19篇
自动化技术   19篇
  2023年   1篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   8篇
  2011年   9篇
  2010年   5篇
  2009年   7篇
  2008年   11篇
  2007年   4篇
  2006年   5篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1991年   1篇
  1984年   1篇
  1979年   2篇
排序方式: 共有121条查询结果,搜索用时 31 毫秒
31.
The primary aim of this study is to find out whether use of different self-debriefing modes affects learning from a game. In self-debriefing participants are led to reflect upon their game experiences by a set of debriefing questions. Two conditions were compared: Individual and Collaborative self-debriefing. The 45 participants first played the game of Lemonade Tycoon Deluxe, were tested for knowledge and self-debriefed in pairs or alone. Then they played the game once more and were tested again. Game scores increased significantly from the first to the second round of gameplay to an equal degree in both conditions. Knowledge scores of participants in individual self-debriefing increased significantly more than those of participants in the Collaborative condition. The study shows that game-based learning can be effectively scaffolded with self-debriefing. Future studies might investigate whether the type of self-debriefing differentially affects game motivation. In addition, attention to the role of feedback is called for.  相似文献   
32.
Surfaces of implantable biomedical devices are increasingly engineered to promote their interactions with tissue. However, surfaces that stimulate desirable mammalian cell adhesion, spreading, and proliferation also enable microbial colonization. The biomaterials‐associated infection that can result is now a critical clinical problem. We have identified an important mechanism to create a surface that can simultaneously promote healing while reducing the probability of infection. Surfaces are created with submicrometer‐sized, non‐adhesive microgels patterned on an otherwise cell‐adhesive surface. Quantitative force measurements between a staphylococcus and a patterned surface show that the adhesion strength decreases significantly at inter‐gel spacings comparable to bacterial dimensions. Time‐resolved flow‐chamber measurements show that the microbial deposition rate dramatically decreases at these same spacings. Importantly, the adhesion and spreading of osteoblast‐like cells is preserved despite the sub‐cellular non‐adhesive surface features. Since such length‐scale‐mediated differential interactions do not rely on antibiotics, this mechanism can be particularly significant in mitigating biomaterials‐associated infection by antibiotic‐resistant bacteria such as MRSA.  相似文献   
33.
34.
In a quartz crystal microbalance, particles adhering to a sensor crystal are perturbed around their equilibrium positions via thickness-shear vibrations at the crystal's fundamental frequency and overtones. The amount of adsorbed molecular mass is measured as a shift in resonance frequency. In inertial loading, frequency shifts are negative and proportional to the adsorbed mass, in contrast with "elastic loading", where particles adhere via small contact points. Elastic loading in air yields positive frequency shifts according to a coupled resonance model. We explore here the novel application of a coupled resonance model for colloidal particle adhesion in a liquid phase theoretically and demonstrate its applicability experimentally. Particles with different radii and in the absence and presence of ligand-receptor binding showed evidence of coupled resonance. By plotting the frequency shifts versus the quartz crystal microbalance with dissipation overtone number, frequencies of zero-crossing could be inferred, indicative of adhesive bond stiffness. As a novelty of the model, it points to a circular relation between bandwidth versus frequency shift, with radii indicative of bond stiffness. The model indicates that bond stiffness for bare silica particles adhering on a crystal surface is determined by attractive Lifshitz-van der Waals and ionic-strength-dependent, repulsive electrostatic forces. In the presence of ligand-receptor interactions, softer interfaces develop that yield stiffer bonds due to increased contact areas. In analogy with molecular vibrations, the radii of adhering particles strongly affect the resonance frequencies, while bond stiffness depends on environmental parameters to a larger degree than for molecular adsorption.  相似文献   
35.
Branched nanostructures are of great interest because of their promising optical and electronic properties. For successful and reliable integration in applications such as photovoltaic devices, the thermal stability of the nanostructures is of major importance. Here the different domains (CdSe cores, CdS pods) of the heterogeneous octapods are shown to have different thermal stabilities, and heating is shown to induce specific shape changes. The octapods are heated from room temperature to 700 °C, and investigated using (analytical and tomographic) transmission electron microscopy (TEM). At low annealing temperatures, pure Cd segregates in droplets at the outside of the octapods, indicating non-stochiometric composition of the octapods. Furthermore, the tips of the pods lose their faceting and become rounded. Further heating to temperatures just below the sublimation temperature induces growth of the zinc blende core at the expense of the wurtzite pods. At higher temperatures, (500-700 °C), sublimation of the octapods is observed in real time in the TEM. Three-dimensional tomographic reconstructions reveal that the four pods pointing into the vacuum have a lower thermal stability than the four pods that are in contact with the support.  相似文献   
36.
Dense tubular membranes were produced by centrifugal casting of an aqueous suspension, containing powder particles of the mixed-conducting perovskite La0.5Sr0.5CoO3−δ and a dispersant. The resulting green bodies were dried and sintered to produce tubes with a maximum length of 12 cm, having a relative density higher than 92%. The particle morphology, the amount of dispersant and its burnout appeared to influence the quality of the final product. Oxygen permeation measurements were conducted in the temperature range 850°–950°C in Air/He gradients. Results were found to be consistent with data reported for disk-type membranes.  相似文献   
37.
When several phase shifting transformers (PSTs) are installed in a meshed grid, the coordination of these devices has to be studied carefully. A poor coordination can lead to inefficient use of infrastructure or even to situations where the security of supply is no longer guaranteed. The goal of this paper is to study how PSTs can be controlled in order to obtain an optimal or near-optimal situation for a given system. The network of the Netherlands and Belgium is taken as a research case. Particle swarm optimization (PSO) is used for this purpose, a black-box optimization technique based on a population of points in the search space.  相似文献   
38.
Targeting of chemotherapeutics towards a tumor site by magnetic nanocarriers is considered promising in tumor-control. Magnetic nanoparticles are also considered for use in infection-control as a new means to prevent antimicrobial resistance from becoming the number one cause of death by the year 2050. To this end, magnetic nanoparticles can either be loaded with an antimicrobial for use as a delivery vehicle or modified to acquire intrinsic antimicrobial properties. Magnetic nanoparticles can also be used for the local generation of heat to kill infectious microorganisms. Although appealing for tumor-and infectioncontrol, injection in the blood circulation may yield reticuloendothelial uptake and physical obstruction in organs that yield reduced targeting efficiency. This can be prevented with suitable surface modification. However, precise techniques to direct magnetic nanoparticles towards a target site are lacking. The problem of precise targeting is aggravated in infection-control due to the micrometer-size of infectious biofilms, as opposed to targeting of nanoparticles towards centimeter-sized tumors. This review aims to identify possibilities and impossibilities of magnetic targeting of nanoparticles for infection-control. We first review targeting techniques and the spatial resolution they can achieve as well as surface-chemical modifications of magnetic nanoparticles to enhance their targeting efficiency and antimicrobial efficacy.It is concluded that targeting problems encountered in tumor-control using magnetic nanoparticles, are neglected in most studies on their potential application in infection-control. Currently biofilm targeting by smart, self-adaptive and pH-responsive, antimicrobial nanocarriers for instance, seems easier to achieve than magnetic targeting. This leads to the conclusion that magnetic targeting of nanoparticles for the control of micrometer-sized infectious biofilms may be less promising than initially expected.However, using propulsion rather than precise targeting of magnetic nanoparticles in a magnetic field to traverse through infectious-biofilms can create artificial channels for enhanced antibiotic transport.This is identified as a more feasible, innovative application of magnetic nanoparticles in infection-control than precise targeting and distribution of magnetic nanoparticles over the depth of a biofilm.  相似文献   
39.
Electrochemical reduction of CO to value-added products holds promise for storage of energy from renewable sources. Copper can convert CO into multi-carbon (C2+) products during CO electroreduction. However, developing a Cu electrocatalyst with a high selectivity for CO reduction and desirable production rates for C2+ products remains challenging. Herein, highly lattice-disordered Cu3N with abundant twin structures as a precursor electrocatalyst is examined for CO reduction. Through in situ activation during the CO reduction reaction (CORR) and concomitant release of nitrogen, the obtained metallic Cu° catalyst particles inherit the lattice dislocations present in the parent Cu3N lattice. The de-nitrified catalyst delivers an unprecedented C2+ Faradaic efficiency of over 90% at a current density of 727 mA cm−2 in a flow cell system. Using a membrane electrode assembly (MEA) electrolyzer with a solid-state electrolyte (SSE), a 17.4 vol% ethylene stream and liquid streams with concentration of 1.45 m and 230 × 10−3 m C2+ products at the outlet of the cathode and SSE-containment layer are obtained.  相似文献   
40.
We present an extension to linear-time temporal logic (LTL) that combines the temporal specification with the collection of statistical data. By collecting statistics over runtime executions of a program we can answer complex queries, such as “what is the average number of packet transmissions' in a communication protocol, or “how often does a particular process enter the critical section while another process remains waiting' in a mutual exclusion algorithm. To decouple the evaluation strategy of the queries from the definition of the temporal operators, we introduce algebraic alternating automata as an automata-based intermediate representation. Algebraic alternating automata are an extension of alternating automata that produce a value instead of acceptance or rejection for each trace. Based on the translation of the formulas from the query language to algebraic alternating automata, we obtain a simple and efficient query evaluation algorithm. The approach is illustrated with examples and experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号