首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2053篇
  免费   66篇
  国内免费   2篇
电工技术   119篇
综合类   1篇
化学工业   556篇
金属工艺   65篇
机械仪表   36篇
建筑科学   40篇
能源动力   96篇
轻工业   117篇
水利工程   5篇
无线电   197篇
一般工业技术   405篇
冶金工业   188篇
原子能技术   102篇
自动化技术   194篇
  2023年   10篇
  2022年   38篇
  2021年   59篇
  2020年   23篇
  2019年   29篇
  2018年   48篇
  2017年   25篇
  2016年   41篇
  2015年   46篇
  2014年   59篇
  2013年   126篇
  2012年   75篇
  2011年   115篇
  2010年   91篇
  2009年   141篇
  2008年   90篇
  2007年   83篇
  2006年   77篇
  2005年   60篇
  2004年   53篇
  2003年   49篇
  2002年   41篇
  2001年   37篇
  2000年   35篇
  1999年   45篇
  1998年   99篇
  1997年   69篇
  1996年   40篇
  1995年   50篇
  1994年   45篇
  1993年   41篇
  1992年   19篇
  1991年   24篇
  1990年   14篇
  1989年   26篇
  1988年   17篇
  1987年   27篇
  1986年   16篇
  1985年   13篇
  1984年   21篇
  1983年   20篇
  1982年   12篇
  1981年   15篇
  1980年   5篇
  1979年   9篇
  1978年   7篇
  1977年   8篇
  1976年   7篇
  1973年   4篇
  1969年   3篇
排序方式: 共有2121条查询结果,搜索用时 15 毫秒
41.
Creation of superhydrophobic materials bio‐inspired by nature fascinates many scientists. One of the most intriguing challenges in this field is the fabrication of these materials using biopolymers from the viewpoint of green chemistry and environmental chemistry. Here, superhydrophobic and biodegradable nonwovens are constructed by electrospinning from a naturally occurring poly(amino acid), poly(γ‐glutamic acid) (γ‐PGA), modified with a hydrophobic α‐amino acid, l ‐phenylalanine. The contact angle of a water droplet on the materials is 154°, and the droplet remains stuck to the material surface even if it is inverted, clearly indicating a petal‐type superhydrophobic property. Biodegradability and post‐functionalization of the nonwovens as well as cell adhesion on the superhydrophobic materials are also evaluated. As far as we know, this is the first report on biodegradable materials exhibiting a petal‐type superhydrophobicity. The material design and processing shown here can be applied to various bioresources and such functional materials will become a new class of functional materials satisfying some of the requirements in green science.  相似文献   
42.
A new friction powder compaction (FPC) process by the sintering and dissolution process (SDP) route for fabricating open-cell aluminum (Al) foam, which requires no external heat sources, was developed. Foams with porosities of 74 and 83 pct were successfully fabricated and their compressive responses were investigated. The sintered mixture during the removal process was observed nondestructively by X-ray computed tomography (CT) to reveal the progress of the removal of soluble particles and to confirm that they were completely dissolved.  相似文献   
43.
Disiloxane–aromatic polyamide(aramid) multiblock copolymers(2SiPASs) were synthesized using 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane(BATS) as an analog of aramidsilicone resin consisting of aromatic polyamide and poly(dimethylsiloxane) (PDMS). 2SiPASs afford a transparent and toughened plastic film. The surface properties of 2SiPAS were investigated by X-ray photoelectron spectroscopy (xps) and static contact angle measurement. The results of surface analysis suggested that BATS content of the 2SiPAS surface increased with increasing BATS content in bulk. The interaction between the platelets and the 2SiPAS surface was found to be very weak when the BATS content reached 26 wt % in bulk. © 1996 John Wiley & Sons, Inc.  相似文献   
44.
Poly(2,6-dimethyl-1,4-phenylene ether) (PPE) is an engineering plastic with high heat distortion temperature. Melt processing of neat PPE is usually accompanied with thermal degradation. The degradation problem is solved by blending with polystyrene to reduce the processing temperature. We propose an alternative using triallylisocyanurate (TAIC). TAIC is a low viscosity liquid that can be cured by peroxide, e.g. α,α′-bis(t-butylperoxy-m-isopropyl)benzene (PBP), to provide a thermoset. The PPE/TAIC mixture was shown to have the upper critical solution temperature (UCST) type phase behavior. At the single-phase regime above UCST and below the cure temperature (∼180°C for PBP), the mixture had a low viscosity, less viscous than a conventional thermoplastic such as PC and PP. That is, a nice window for injection molding was available, e.g., at 100°C to 160°C for a 50/50 blend. After injecting into a hot mold set at cure temperature, the blend cured in a short time (∼80% conversion in 5 min). Then the molded and partly cured material kept its shape and dimensions during post-cure in a hot chamber at higher temperature (e.g. 250°C). Using transmission electron microscopy and dynamic mechanical analyses, it was shown that the cured blend had a bicontinuous two-phase structure with periodic spacings of ∼30 nm, suggesting a structure formation via a spinodal decomposition driven by the increase in molecular weight of TAIC during cure. The cured material showed excellent flexural strength and high chemical resistance.  相似文献   
45.
The accumulation of mutations in cancer driver genes, such as tumor suppressors or proto-oncogenes, affects cellular homeostasis. Disturbances in the mechanism controlling proliferation cause significant augmentation of cell growth and division due to the loss of sensitivity to the regulatory signals. Nowadays, an increasing number of cases of liver cancer are observed worldwide. Data provided by the International Cancer Genome Consortium (ICGC) have indicated many alterations within gene sequences, whose roles in tumor development are not well understood. A comprehensive analysis of liver cancer (virus-associated hepatocellular carcinoma) samples has identified new and rare mutations in B-Raf proto-oncogene (BRAF) in Japanese HCC patients, as well as BRAF V600E mutations in French HCC patients. However, their function in liver cancer has never been investigated. Here, using functional analysis and next generation sequencing, we demonstrate the tumorigenic effect of BRAF V600E on hepatocytes (THLE-2 cell line). Moreover, we identified genes such as BMP6, CXCL11, IL1B, TBX21, RSAD2, MMP10, and SERPIND1, which are possibly regulated by the BRAF V600E-mediated, mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway. Through several functional assays, we demonstrate that BRAF L537M, D594A, and E648G mutations alone are not pathogenic in liver cancer. The investigation of genome mutations and the determination of their impact on cellular processes and functions is crucial to unraveling the molecular mechanisms of liver cancer development.  相似文献   
46.
Lectins, carbohydrate-binding proteins, are attractive biomolecules for medical and biotechnological applications. Many lectins have multiple carbohydrate recognition domains (CRDs) and strongly bind to specific glycans through multivalent binding effect. In our previous study, protein nano-building blocks (PN-blocks) were developed to construct self-assembling supramolecular nanostructures by linking two oligomeric proteins. A PN-block, WA20-foldon, constructed by fusing a dimeric four-helix bundle de novo protein WA20 to a trimeric foldon domain of T4 phage fibritin, self-assembled into several types of polyhedral nanoarchitectures in multiples of 6-mer. Another PN-block, the extender PN-block (ePN-block), constructed by tandemly joining two copies of WA20, self-assembled into cyclized and extended chain-type nanostructures. This study developed novel functional protein nano-building blocks (lectin nano-blocks) by fusing WA20 to a dimeric lectin, Agrocybe cylindracea galectin (ACG). The lectin nano-blocks self-assembled into various oligomers in multiples of 2-mer (dimer, tetramer, hexamer, octamer, etc.). The mass fractions of each oligomer were changed by the length of the linkers between WA20 and ACG. The binding avidity of the lectin nano-block oligomers to glycans was significantly increased through multivalent effects compared with that of the original ACG dimer. Lectin nano-blocks with high avidity will be useful for various applications, such as specific cell labeling.  相似文献   
47.
Fluorescent molecular assembly systems provide an exciting platform for creating stimuli-responsive nano- and microstructured materials with optical, electronic, and sensing functions. To understand the relationship between (i) the plausible molecular structures preferentially adopted depending on the solvent polarity (such as N,N-dimethylformamide [DMF], tetrahydrofuran [THF], and toluene), (ii) the resulting spectroscopic features, and (iii) self-assembled nano-, micro-, and macrostructures, we chose a sterically crowded triangular azo dye (3Bu) composed of a polar molecular core and three peripheral biphenyl wings. The chromophore changed the solution color from yellow to pink-red depending on the solvent polarity. In a yellow DMF solution, a considerable amount of the twisted azo form could be kept stable with the help of favorable intermolecular interactions with the solvent molecules. By varying the concentration of the DMF solution, the morphology of self-assembled structures was transformed from nanoparticles to micrometer-sized one-dimensional (1D) structures such as sticks and fibers. In a pink-red toluene solution, the periphery of the central ring became more planar. The resulting significant amount of the keto-hydrazone tautomer grew into micro- and millimeter-sized 1D structures. Interestingly, when THF-H2O (1:1) mixtures were stored at a low temperature, elongated fibers were stacked sideways and eventually developed into anisotropic two-dimensional (2D) sheets. Notably, subsequent exposure of visible-light-irradiated sphere samples to solvent vapor resulted in reversible fluorescence off↔on switching accompanied by morphological restoration. These findings suggest that rational selection of organic dyes, solvents, and light is important for developing reusable fluorescent materials.  相似文献   
48.
The radiation-induced surface activation (RISA) effect will be applied to the core design in supercritical light water reactor (SCWR) in order to achieve a high performance with excellent economy and safety. The purpose of the present study is to investigate the RISA effect in the candidate fuel cladding materials in SCWR such as PNC1520. The change of weldability due to RISA effect and the related microstructure analysis were performed in oxidized PNC1520 and 304 stainless steel with various oxidization periods. The phases contained in the surface oxide layer of the present specimen were identified as Fe2CrO4, γ-Fe2O3, and Fe2O3. The lifetime of 13.8 days for wettability improving factor was confirmed in the ultraviolet (UV) irradiation. Meanwhile, the long life of 13.8 days and short life of 0.8 days for wettability improving factors were identified in the γ-ray irradiation. Based on the fact that the band gap energies of Fe2CrO4, γ-Fe2O3, and Fe2O3 were, respectively, 2.1, 2.0, and 2.2 eV, and the photo energies of UV and γ-ray irradiation were 4.48 eV and 13.3 MeV, it is therefore clarified that the hydrophilization on the oxide layer is ascribed to the RISA effect.  相似文献   
49.
Intervertebral disc (IVD) diseases are common spinal disorders that cause neck or back pain in the presence or absence of an underlying neurological disorder. IVD diseases develop on the basis of degeneration, and there are no established treatments for degeneration. IVD diseases may therefore represent a candidate for the application of regenerative medicine, potentially employing normal human dermal fibroblasts (NHDFs) induced to differentiate into nucleus pulposus (NP) cells. Here, we used a three-dimensional culture system to demonstrate that ectopic expression of MYC, KLF4, NOTO, SOX5, SOX6, and SOX9 in NHDFs generated NP-like cells, detected using Safranin-O staining. Quantitative PCR, microarray analysis, and fluorescence-activated cell sorting revealed that the induced NP cells exhibited a fully differentiated phenotype. These findings may significantly contribute to the development of effective strategies for treating IVD diseases.  相似文献   
50.
Molecular dynamics (MD) simulations of large argon clusters impacting on silicon solid targets were performed in order to study the transient process of crater formation and sputtering. The MD simulations demonstrate that the initial momentum of incident cluster is transferred to target surface atoms through multiple collision mechanism, where the initial momentum, which is along to the surface normal before impact, is deflected to lateral direction. This momentum transfer process was analyzed by the calculation of the velocity at the crater edge (the interface between cluster and target). In the case of Ar1000 cluster impact on Si(1 0 0) target at low energy per atom less than 40 eV/atom, the maximum value of lateral velocity of the crater edge increases in proportional to the velocity of incident cluster atoms. On the other hand, the crater edge velocity saturates over 40 eV/atom of incident energy per atom. In this case, the whole of constituent cluster atoms are implanted into the target and expand in both lateral and reflective directions at the subsurface region of the target. These MD simulations demonstrated that this collisional process result in the high yield sputtering of the target atoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号