首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117695篇
  免费   3631篇
  国内免费   1779篇
电工技术   2587篇
技术理论   2篇
综合类   4488篇
化学工业   17530篇
金属工艺   6797篇
机械仪表   4977篇
建筑科学   4744篇
矿业工程   1609篇
能源动力   1967篇
轻工业   5500篇
水利工程   1791篇
石油天然气   2940篇
武器工业   242篇
无线电   13203篇
一般工业技术   20330篇
冶金工业   4179篇
原子能技术   687篇
自动化技术   29532篇
  2024年   164篇
  2023年   587篇
  2022年   1002篇
  2021年   1444篇
  2020年   1091篇
  2019年   908篇
  2018年   15329篇
  2017年   14430篇
  2016年   10844篇
  2015年   1885篇
  2014年   1881篇
  2013年   2236篇
  2012年   5255篇
  2011年   11697篇
  2010年   10220篇
  2009年   7336篇
  2008年   8495篇
  2007年   9388篇
  2006年   1932篇
  2005年   2835篇
  2004年   2226篇
  2003年   2109篇
  2002年   1414篇
  2001年   851篇
  2000年   1044篇
  1999年   1079篇
  1998年   839篇
  1997年   733篇
  1996年   730篇
  1995年   569篇
  1994年   468篇
  1993年   355篇
  1992年   275篇
  1991年   215篇
  1990年   148篇
  1989年   127篇
  1988年   120篇
  1987年   69篇
  1986年   50篇
  1982年   31篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300–800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500–650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.  相似文献   
982.
To gain deep insight into the mechanism of phonon scattering at grain boundaries, we investigated the boundary thermal resistance by using picosecond pulsed-laser time-domain thermoreflectance for epitaxially grown W/Fe2VAl/W films. By using radio-frequency magnetron sputtering, we prepared a series of the three-layer films whose Fe2VAl thickness ranged from 1 nm to 37 nm. The fine oscillation of reflectivity associated with the top W layer clearly appeared in synchrotron x-ray reflectivity measurements, indicating a less obvious mixture of elements at the boundary. The areal heat diffusion time, obtained from the time-domain thermoreflectance signal in the rear-heating front-detection configuration, reduced rapidly in samples whose Fe2VAl layer was thinner than 15 nm. The ~ 10% mismatch in lattice constant between Fe2VAl and W naturally produced the randomly distributed lattice stress near the boundary, causing an effective increase of boundary thermal resistance in the thick samples, but the stress became homogeneous in the thinner layers, which reduced the scattering probability of phonons.  相似文献   
983.
A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.  相似文献   
984.
In this paper, the thermoelectric performance of porous armchair graphene nanoribbons under tensile and compressive strain is investigated as a function of pore morphology and temperature. For all the porous structures irrespective of their pore size, the performance improves at a compressive strain of 10%, while for tensile nature, the minimum cut-off strain required for improved thermoelectric figure of merit (ZT) shows an inverse relation with the pore size. In addition, optimal pore shape geometry can yield better performance, even at lower values of strain. Further analysis reveals that tensile strain is not able to improve the performance at low and intermediate temperatures of around 300 K, whereas tensile/compressive strain is effective in enhancing the performance of porous armchair graphene nanoribbons at higher temperatures. Furthermore, the structures are found to be more sensitive to compressive strain than the tensile one since the effect of compressive strain is found to improve ZT more significantly. Our analysis based on Non-Equilibrium Green’s function calculations suggests a possible route for tailoring the functionality of nanomaterials so as to achieve great potentials for thermoelectric applications at various temperatures.  相似文献   
985.
The structural, optical, electrical and electrical–optical properties of a double-junction GaAsP light-emitting diode (LED) structure grown on a GaP (100) substrate by using a molecular beam epitaxy technique were investigated. The pn junction layers of GaAs1?xPx and GaAs1?yPy, which form the double-junction LED structure, were grown with two different P/As ratios. High-resolution x-ray diffraction (HRXRD), photoluminescence (PL), and current–voltage (IV) measurements were used to investigate the structural, optical and electrical properties of the sample. Alloy composition values (x, y) and some crystal structure parameters were determined using HRXRD measurements. The phosphorus compositions of the first and second junctions were found to be 63.120% and 82.040%, respectively. Using PL emission peak positions at room temperature, the band gap energies (Eg) of the first and second junctions were found to be 1.867 eV and 2.098 eV, respectively. In addition, the alloy compositions were calculated by Vegard’s law using PL measurements. The turn-on voltage (Von) and series resistance (Rs) of the device were obtained from the IV measurements to be 4.548 V and 119 Ω, respectively. It was observed that the LED device emitted in the red (664.020 nm) and yellow (591.325 nm) color regions.  相似文献   
986.
This paper discusses the solution of large-scale linear discrete ill-posed problems arising from image restoration problems. Since the scale of the problem is usually very large, the computations with the blurring matrix can be very expensive. In this regard, we consider problems in which the coefficient matrix is the sum of Kronecker products of matrices to benefit the computation. Here, we present an alternative approach based on reordering of the image approximations obtained with the global Arnoldi–Tikhonov method. The ordering of the intensities is such that it makes the image approximation monotonic and thus minimizes the finite differences norm. We present theoretical properties of the method and numerical experiments on image restoration.  相似文献   
987.
A highly accurate frequency estimation providing suppression of windowing effects, denoising performances and frequency resolutions in excess of Gabor–Heisenberg limit, is proposed for brief duration signals. It is shown that unbiased frequency estimation with vanishing frequency variances is achieved far below Cramer–Rao lower bound when signal-to-noise ratio reaches vicinity of threshold values. Observed performances provide novel and valuable perspectives for efficient and accurate frequency estimation for brief duration signals in noise.  相似文献   
988.
In mobile ad hoc networks (MANETs), node mobility management is performed by the routing protocol. It may use metrics to reflect link state/quality. But, the delay between measures of the link quality and its integration in the route computation is very detrimental to the mobility management. Consequently, routing protocols may use lossy links for a few seconds leading to a significant performance deterioration. In this paper, we propose a new routing metric technique calculation which aims at anticipating link quality. Basically, the idea is to predict metric values a few seconds in advance, in order to compensate the delay involved by the link quality measurement and their dissemination by the routing protocol. Our technique is based on measurements of signal strength and is integrated in two classical routing metrics: ETX (expected transmission count) and ETT (expected transmission time). Validations are performed through both simulations and a testbed experimentation with OLSR as routing protocol. NS-3 simulations show that our metric may lead to a perfect mobility management with a packet delivery ratio of 100%. Experiments on a testbed prove the feasibility of our approach and show that this technique reduces the packet error rate by a factor of 3 in an indoor environment compared to the classical metrics calculation.  相似文献   
989.
Osteoinductive synthetic biomaterials for replacing autografts can be developed by mimicking bone hierarchy and surface topography for host cell recruitment and differentiation. Until now, it has been challenging to reproduce a bone‐like staggered hierarchical structure since the energy change underlying synthetic pathways in vitro is essentially different from that of the natural process in vivo. Herein, a bone‐like hierarchically staggered architecture is reproduced under thermodynamic control involving two steps: fabrication of a high‐energy polyacrylic acid‐calcium intermediate and selective mineralization in collagenous gap regions driven by an energetically downhill process. The intermediate energy interval could easily be adjusted to determine different mineralization modes, with distinct morphologies and biofunctions. Similar to bone autografts, the staggered architecture offers a bone‐specific microenvironment for stem cell recruitment and multidifferentiation in vitro, and induces neo‐bone formation with bone marrow blood vessels by host stem cell homing in vivo. This work provides a novel perspective for an in vitro simulating biological mineralization process and proof of concept for the clinical application of smart biomaterials.  相似文献   
990.
Black phosphorus (BP) has increasingly attracted scientific attention since its first applications in biomedicine due to its unique properties and excellent biocompatibility. In particular, its layer‐dependent bandgap, moderate carrier mobility, large surface‐area‐to‐volume ratio, biodegradability, intrinsic photoacoustic properties, and biocompatibility make it an ideal candidate for use in photothermal therapy, photodynamic therapy, drug delivery, 3D printing, bioimaging, biosensing, and theranostics, which are reviewed here. In addition, the article discusses strategies to overcome challenges related to surface instability due to chemical degradation, a major obstacle for its application. This review not only provides a comprehensive summary on BP preparation and biomedical applications but also summarizes recent research and future possibilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号