首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171159篇
  免费   7737篇
  国内免费   3875篇
电工技术   5709篇
技术理论   5篇
综合类   7856篇
化学工业   26836篇
金属工艺   10074篇
机械仪表   8421篇
建筑科学   10012篇
矿业工程   3128篇
能源动力   3459篇
轻工业   8874篇
水利工程   2813篇
石油天然气   5597篇
武器工业   687篇
无线电   18378篇
一般工业技术   26512篇
冶金工业   7066篇
原子能技术   1330篇
自动化技术   36014篇
  2024年   361篇
  2023年   1498篇
  2022年   2431篇
  2021年   3368篇
  2020年   2634篇
  2019年   2194篇
  2018年   16536篇
  2017年   15859篇
  2016年   12163篇
  2015年   3849篇
  2014年   4344篇
  2013年   5253篇
  2012年   8638篇
  2011年   15125篇
  2010年   13145篇
  2009年   10400篇
  2008年   11409篇
  2007年   12234篇
  2006年   4997篇
  2005年   5542篇
  2004年   3995篇
  2003年   3655篇
  2002年   2829篇
  2001年   2115篇
  2000年   2477篇
  1999年   2738篇
  1998年   2233篇
  1997年   1804篇
  1996年   1870篇
  1995年   1493篇
  1994年   1221篇
  1993年   867篇
  1992年   712篇
  1991年   576篇
  1990年   402篇
  1989年   332篇
  1988年   279篇
  1987年   184篇
  1986年   125篇
  1985年   88篇
  1984年   57篇
  1982年   40篇
  1968年   43篇
  1966年   42篇
  1965年   46篇
  1959年   36篇
  1958年   37篇
  1957年   36篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The visible light communication (VLC) network is usually relatively small scale and can provide high-data-rate information transmission, where multiple users get access to the network according to the carrier sense multiple access with collision avoidance (CSMA/CA) mechanism specified by IEEE 802.15.7 standard. In this paper, we propose a novel dynamic contention window with successive transmission (DCW-ST) scheme to improve the performance of this channel access mechanism and to achieve better network throughput without delay performance degradation. Specifically, we propose to adjust the contention window dynamically to adapt to the time-changing network size. Further, we derive the contention window size to achieve trade-off of throughput and delay, and the minimum contention window size required for the throughput enhancement. In addition, in order to further improve the delay performance, we present a successive transmission scheme that allows the nodes which have completed one transmission successfully to get the chance of transmitting information successively according to the network condition. Simulations are performed for the VLC system in saturated traffic and compared with the theoretical performances, which demonstrate that our proposed scheme outperforms the legacy CSMA/CA of IEEE 802.15.7.  相似文献   
992.
This paper presents an accurate analysis for deriving transient oscillation amplitude of Rotary Traveling Wave Oscillators (RTWOs) as a transmission-line based and high frequency circuit. The procedure of the paper is based on considering the nonlinear behavior of negative transconductors that are used for loss compensation of the transmission line. Finally, a closed-form expression for the time-domain amplitude of the RTWOs is obtained. The proposed useful and accurate expression could be used for designing the RTWOs for high performance-high speed systems. Also, it enables us to analyze and synthesize the oscillators with the desired transient behavior. This aspect of the RTWOs is not studied in previous works. The proposed theoretical results are then compared with accurate simulations. Simulations have been done in 0.18 μm CMOS technology with 1.8 V supply voltage. Results show less than 10% difference in steady state oscillation amplitude of theoretical expression and simulations. Considering the nonlinear equation of the RTWOs amplitude, complicated type of solving, simplifications and its numerical solution, the proposed derived expression has a good agreement with simulations.  相似文献   
993.
This paper presents a fully integrated, low transmit-power and high-efficiency 2.4 GHz class-E power amplifier (PA) in TSMC 0.18 μm CMOS process for low-power transmitters such as wireless sensor networks (WSN). In this paper, a new output load has been proposed. Also, analytical design equations have been included to design an efficient low power circuit. This PA, employs the pad capacitance and bond-wire inductance of the output node, for satisfying class-E zero-voltage switching (ZVS) condition and matching the antenna’s 50 Ω resistance. By using bond-wire inductance instead of inductor in the output filter, smaller chip size and higher efficiency has been achieved compared to other works for low transmit-power applications. Also, the effectiveness of bulk-drive technique on faster switching and increasing efficiency have been evaluated. It has been proved that this technique leads to increase the efficiency of switching PAs. This PA delivers a range of output power from 2.7 to 7.2 dBm with a supply voltage range from 500 to 850 mV while achieving overall power efficiency range of 57.3–60.7%.  相似文献   
994.
Colloidal quantum dots (QDs) are widely studied due to their promising optoelectronic properties. This study explores the application of specially designed and synthesized “giant” core/shell CdSe/(CdS)x QDs with variable CdS shell thickness, while keeping the core size at 1.65 nm, as a highly efficient and stable light harvester for QD sensitized solar cells (QDSCs). The comparative study demonstrates that the photovoltaic performance of QDSCs can be significantly enhanced by optimizing the CdS shell thickness. The highest photoconversion efficiency (PCE) of 3.01% is obtained at optimum CdS shell thickness ≈1.96 nm. To further improve the PCE and fully highlight the effect of core/shell QDs interface engineering, a CdSex S1?x interfacial alloyed layer is introduced between CdSe core and CdS shell. The resulting alloyed CdSe/(CdSex S1?x )5/(CdS)1 core/shell QD‐based QDSCs yield a maximum PCE of 6.86%, thanks to favorable stepwise electronic band alignment and improved electron transfer rate with the incorporation of CdSex S1?x interfacial layer with respect to CdSe/(CdS)6 core/shell. In addition, QDSCs based on “giant” core/CdS‐shell or alloyed core/shell QDs exhibit excellent long‐term stability with respect to bare CdSe‐based QDSCs. The giant core/shell QDs interface engineering methodology offers a new path to improve PCE and the long‐term stability of liquid junction QDSCs.  相似文献   
995.
Monolayer 2D MoS2 grown by chemical vapor deposition is nanopatterned into nanodots, nanorods, and hexagonal nanomesh using block copolymer (BCP) lithography. The detailed atomic structure and nanoscale geometry of the nanopatterned MoS2 show features down to 4 nm with nonfaceted etching profiles defined by the BCP mask. Atomic resolution annular dark field scanning transmission electron microscopy reveals the nanopatterned MoS2 has minimal large‐scale crystalline defects and enables the edge density to be measured for each nanoscale pattern geometry. Photoluminescence spectroscopy of nanodots, nanorods, and nanomesh areas shows strain‐dependent spectral shifts up to 15 nm, as well as reduction in the PL efficiency as the edge density increases. Raman spectroscopy shows mode stiffening, confirming the release of strain when it is nanopatterned by BCP lithography. These results show that small nanodots (≈19 nm) of MoS2 2D monolayers still exhibit strong direct band gap photoluminescence (PL), but have PL quenching compared to pristine material from the edge states. This information provides important insights into the structure–PL property correlations of sub‐20 nm MoS2 structures that have potential in future applications of 2D electronics, optoelectronics, and photonics.  相似文献   
996.
Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.  相似文献   
997.
A high efficiency and wideband 300 GHz frequency doubler based on six Schottky diodes is presented in this paper. This balanced doubler features a compact and robust circuit on a 5-μm-thick, 0.36-mm-wide, and 1-mm-long GaAs membrane, fabricated by LERMA-C2N Schottky process. The conversion efficiency is mainly better than 16% across the wide bandwidth of 266–336 GHz (3 dB fractional bandwidth of 24%) when pumping with 20–60 mW input power (P in) at the room temperature. A peak output power of 14.75 mW at 332 GHz with a 61.18 mW P in, an excellent peak efficiency of 30.5% at 314 GHz with 43.86 mW P in and several frequency points with outstanding efficiency of higher than 25% are delivered. This doubler served as the second stage of the 600 GHz frequency multiplier chain is designed, fabricated, and measured. The performance of this 300 GHz doubler is highlighted comparing to the state-of-art terahertz frequency doublers.  相似文献   
998.
We perform a comprehensive study on the emission from finite arrays of patch antenna microcavities designed for the terahertz range by using a finite element method. The emission properties including quality factors, far-field pattern, and photon extraction efficiency are investigated for etched and non-etched structures as a function of the number of resonators, the dielectric layer thickness, and period of the array. In addition, the simulations are achieved for lossy and perfect metals and dielectric layers, allowing to extract the radiative and non-radiative contributions to the total quality factors of the arrays. Our study shows that this structure can be optimized to obtain low beam divergence (FWHM <10°) and photon extraction efficiencies >50% while keeping a strongly localized mode. These results show that the use of these microcavities would lead to efficient terahertz emitters with a low divergence vertical emission and engineered losses.  相似文献   
999.
A novel receiver optical system designed for Korean VLBI Network (KVN) has been used for conducting simultaneous millimeter-wave very long baseline interferometry (VLBI) observations at frequencies of 22, 43, 86, and 129 GHz. This multi-frequency band receiver system has been effective in compensation of atmospheric phase fluctuation by unique phase referencing technique in mm-VLBI observations. However, because the original optics system incorporated individual cryogenic receivers in separate cryostats, a rather bulky optical bench of size about 2600 mm x 2300 mm x 60 mm was required. To circumvent difficulties in installation and beam alignment, an integrated quasi-optical circuit incorporating a more compact triple-band receiver in single cryostat is proposed in this paper. The recommended frequency bands of the improved triple-band receiver are K(18–26 GHz) band, Q(35–50 GHz) band, and W(85–115 GHz) band. A frequency-independent quasi-optical circuit for triple band is adopted to obtain constant aperture efficiency as a function of the observed frequencies. The simulation results show that total aperture efficiency of each recommended frequency band is maintained almost constant within 1%. We present the design details of the compact wideband quasi-optical circuit and the triple-band receiver optimized for simultaneous multi-frequency observations.  相似文献   
1000.
In orthogonal frequency division multiplexing (OFDM) system, high value of peak-to-average power ratio (PAPR) is an operational problem that may cause non-linear distortion resulting in high bit error rate. Selected mapping (SLM) is a well known technique that shows good PAPR reduction capability but inflicts added computational overhead. In this paper, using Riemann sequence based SLM method, we applied reverse searching technique to find out low PAPR yielding phase sequences with significant reduction in computational complexity. Additionally, we explored side-information free transmission that achieves higher throughput but sacrifices PAPR reduction. Finally, to overcome this loss in PAPR reduction, we proposed application of Square-rooting companding technique over the output OFDM transmitted signal. Simulation results show that the proposed method is able to compensate the sacrifice in PAPR and achieved PAPR reduction of 8.9 dB with very low computational overhead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号